Elementary arithmetic, with brief notices of its history... by Robert Potts.

8 INTRODUCTION. contained in the sphere of the universe as conceived by Aristarchus. He assumed a scale of numeration whose radix or base is a myriad of myriads, or ten thousand times ten thousand, the number which then formed the limit of the Greek numerical language. All numbers less than this radix he called primary numbers, and the radix itself ho made the unit of secondary numbers; he then proceeds to ternary, quaternary, and other numbers of higher orders, forming successive classes. According to the Indian notation, the units of Archimedes, the primary, secondary, ternary, quaternary, quinary, &c., orders of numbers, will consist of 1; 1 with 8 ciphers; 1 with 16 ciphers; 1 with 24 ciphers; 1 with 32 ciphers, &c., respectively. And the unit of the ten thousand times ten thousandth order would consist of 1 with 799999992 ciphers. His method for determining the number of places in any required number is the following. He supposes a series of numbers beginning with unity, in continued proportion, and shows that the product of any two terms of this series is equal to that term whose place reckoned from the first, is less by unity than the sum of the two numbers which indicate the places of the two terms; as the 7th term of the series is equal to the product of the 3rd and 5th terms. He then assumes the series 1, 10, 100, 1000, &c., in which each successive term increases tenfold, or where the common ratio is 10. The first 8 terms of this series (omitting the first term) are primary numbers; the next 8 terms, secondary numbers; the third 8, ternary numbers, and so on; and tho question is to determine that term in the series which is equal to the product of any two assigned terms, or the term whose place is the sum (less by unity) of the two numbers which indicate the places of the two assigned terms. The classes themselves he calls octades, or' periods of eight, from each class requiring eight symbols, or eight places of figures of common notation, to express the numbers included in each class. He then shows, without finding or assuming the number itself, that the number requiring for its expression not more than eight of these octades, or, in our notation, not exceeding 64 places of figures, will exceed the number of the grains of sand in the sphere of Aristarchus, each grain of sand being so small that 10,000 of them are less than one seed of poppy. Apollonius, about 240 B.c., adopted the plan of Archimedes of classifying numbers, but instead of the octades of Archimedes, ho adopted tetrads, reducing the radix from ten thousand times ten thousand, to ten thousand. The units after the first class he designated in order, the single myriad, the double myriad, the treble myriad, &c., which he denoted by MC, Mf3, My, &c., respectively. His chief object, however, appears to have been to simplify the process of multiplication, and to make the multiplication of all higher numbers dependent on the product of any two of the first nine digits. The work of Apollonius has perished, and even the name of its title is unknown. It is highly probable that the substance of it was embodied in the first two books of the mathematical collections of Pappus. Only a fragment of the latter portion of the second part is known to be extant, in which are exhibited several examples of the method of Apollonius. This fragment was published by Dr. Wallis with a Latin translation and notes in 1688, and is reprinted in the third volume of his works, pp. 595-614.

/ 389
Pages

Actions

file_download Download Options Download this page PDF - Pages #1-20 Image - Page 8 Plain Text - Page 8

About this Item

Title
Elementary arithmetic, with brief notices of its history... by Robert Potts.
Author
Potts, Robert, 1805-1885.
Canvas
Page 8
Publication
London,: Relfe bros.,
1876.
Subject terms
Arithmetic

Technical Details

Link to this Item
https://name.umdl.umich.edu/abu7012.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abu7012.0001.001/13

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abu7012.0001.001

Cite this Item

Full citation
"Elementary arithmetic, with brief notices of its history... by Robert Potts." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abu7012.0001.001. University of Michigan Library Digital Collections. Accessed June 24, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.