Pangeometrie, von N. J. Lobatschefskij. Kasan 1856. Uebers. und hrsg. von Heinrich Liebmann. Mit 30 Figuren im Text.

42 N. J. Lobatschefskij. ~ 5. Abstandsmessungen. [Abstand von zwei Punkten.] Mit Hülfe des Vorangehenden können wir die Aufgabe lösen, den Abstand von zwei Punkten zu finden, deren Lage in der Ebene durch ihre rechtwinkligen Coordinaten x, y und x', y' bestimmt ist. Setzen wir zur Abkürzung x = x'-x, Zy y'- y. Fällen wir [Fig. 13] ein Lot vom Ende von y auf y', und bezeichnen wir die Länge dieses Lotes mit q, während y, den Theil von y' zwischen der x-Axe y:~4ae und dem Lote q bezeichnet.,,y In Folge der Gleichungen (25) wer_y ~Y den wir haben cosH I(y,)= cosll(y) sinH(Jdx) L J/ cosl1(dx) = cos l(q) sinHI(y). 7) ~x-A~Q Nachdem man die Werthe von y und Fig. 13. q mit Hülfe dieser Gleichungen bestimmt hat, wird der gesuchte Abstand der beiden Punkte, den wir mit r bezeichnen, durch die folgende Gleichung gegeben sein, die man aus der Gleichung (11) entnimmt sinHj(r) == sin 7(y'- y,) sinH(q). [Bogenelement.] Wenn dx und dy und folglich q, r sehr klein sind, so dass man die höheren Potenzen dieser Grössen gegen die niederen vernachlässigen kann, so wird r das Linienelement ds einer Curve darstellen, zu dessen Ausdruck man gelangt, indem man nimmt sin l(q) = 1 - qg2 cosll(q) = q — q3 sin I(r) = - r sinll(y'- y,) == - (y'- y), wonach kommt:ix sin 11(y) ds V +sindy dx2 ds Vd y_ sin, l/(y)

/ 99
Pages

Actions

file_download Download Options Download this page PDF - Pages 38-57 Image - Page 38 Plain Text - Page 38

About this Item

Title
Pangeometrie, von N. J. Lobatschefskij. Kasan 1856. Uebers. und hrsg. von Heinrich Liebmann. Mit 30 Figuren im Text.
Author
Lobachevskiĭ, N. I. (Nikolaĭ Ivanovich), 1792-1856.
Canvas
Page 38
Publication
Leipzig,: W. Engelmann,
1902.
Subject terms
Geometry, Non-Euclidean

Technical Details

Link to this Item
https://name.umdl.umich.edu/abr5311.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abr5311.0001.001/45

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abr5311.0001.001

Cite this Item

Full citation
"Pangeometrie, von N. J. Lobatschefskij. Kasan 1856. Uebers. und hrsg. von Heinrich Liebmann. Mit 30 Figuren im Text." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abr5311.0001.001. University of Michigan Library Digital Collections. Accessed May 3, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.