An elementary treatment of the theory of spinning tops and gyroscopic motion, by Harold Crabtree.
Annotations Tools
2 INTRODUCTORY CHAPTER us some faint idea of how what appears to be solid may in reality be made up of minute loose particles revolving round each other at an enormous rate: and it is interesting to think that nearly 2,000 years before this theory was formally stated, the Roman poet Lucretius should have written six books of majestic verse, one entirely, and the others partly, in support of a theory extremely similar to this, propounded by the Greek philosopher Democritus 400 years previously. Let us consider for a few minutes the behaviour of an ordinary spinning top. It is full of surprising contradictions. In the first place, to take the most obvious of all, we cannot balance it on its peg; but give it a spin and it will stay balanced for a long time. We have known this all our lives; but few people can explain the reason, except to say " because it's spinning "which begs the question. Again, supposing we spin it with its axis vertical and then give it a knock, it will go round the table in a slanting position; but if we spin it slanting to begin with, it will almost immediately stand upright. And once again, although it is the friction of the table and the resistance of the air which eventually bring a spinning top to rest, yet if we take a very smooth surface, such as a glass plate, we find that many tops will not spin on it at all. The childish delight which we felt in watching our tops spinning remains with many of us a vivid recollection to this day. Some tops would buzz about busily before settling down to a regular motion; others would be steady and stately from the first. Some would " go to sleep" almost at once, and, if disturbed, would only show signs of life for a short time before going to sleep again: these when they "died" would die very suddenly. Others when disturbed would spin about in a slanting position for a long time, particularly those with rather a long "leg"; these took a long time to "die." It is within everybody's experience that if a top is spun so that the foot traces out (approximately) a circle on the table, this circle will be described in the direction of rotation of the chain we see that it is acted on (in addition to its weight) by two tensions, each of very great magnitude, since they act at a very small angle to each other and yet supply the normal force necessary for the circular motion. Hence any force which deflects A B from its circular position will have to be extremely large to A B T3 T?~ overcome the resolutes of these tensions which would be immediately called into play. Similarly in the case of the disc, any small elemental area is under the action of two very large tensions, resolutes of which are immediately called into play when a lateral blow is given to the disc.
-
Scan #1
Page #1
-
Scan #2
Page #2
-
Scan #3
Page #3 - Title Page
-
Scan #4
Page #4
-
Scan #5
Page #5 - Title Page
-
Scan #6
Page #6
-
Scan #7
Page #7
-
Scan #8
Page #8
-
Scan #9
Page VII
-
Scan #10
Page VIII
-
Scan #11
Page IX - Table of Contents
-
Scan #12
Page X - Table of Contents
-
Scan #13
Page XI - Table of Contents
-
Scan #14
Page XII - Table of Contents
-
Scan #15
Page 1
-
Scan #16
Page 2
-
Scan #17
Page 3
-
Scan #18
Page 4
-
Scan #19
Page 5
-
Scan #20
Page 6
-
Scan #21
Page 7
-
Scan #22
Page 8
-
Scan #23
Page 9
-
Scan #24
Page 10
-
Scan #25
Page 11
-
Scan #26
Page 12
-
Scan #27
Page 13
-
Scan #28
Page 14
-
Scan #29
Page 15
-
Scan #30
Page 16
-
Scan #31
Page 17
-
Scan #32
Page 18
-
Scan #33
Page 19
-
Scan #34
Page 20
-
Scan #35
Page 21
-
Scan #36
Page 22
-
Scan #37
Page 23
-
Scan #38
Page 24
-
Scan #39
Page 25
-
Scan #40
Page 26
-
Scan #41
Page 27
-
Scan #42
Page 28
-
Scan #43
Page 29
-
Scan #44
Page 30
-
Scan #45
Page 31
-
Scan #46
Page 32
-
Scan #47
Page 33
-
Scan #48
Page 34
-
Scan #49
Page 35
-
Scan #50
Page 36
-
Scan #51
Page 37
-
Scan #52
Page 38
-
Scan #53
Page 39
-
Scan #54
Page 40
-
Scan #55
Page 41
-
Scan #56
Page 42
-
Scan #57
Page 43
-
Scan #58
Page 44
-
Scan #59
Page 45
-
Scan #60
Page 46
-
Scan #61
Page 47
-
Scan #62
Page 48
-
Scan #63
Page 49
-
Scan #64
Page 50
-
Scan #65
Page 51
-
Scan #66
Page 52
-
Scan #67
Page 53
-
Scan #68
Page 54
-
Scan #69
Page 55
-
Scan #70
Page 56
-
Scan #71
Page 57
-
Scan #72
Page 58
-
Scan #73
Page 59
-
Scan #74
Page 60
-
Scan #75
Page 61
-
Scan #76
Page 62
-
Scan #77
Page 63
-
Scan #78
Page 64
-
Scan #79
Page 65
-
Scan #80
Page 66
-
Scan #81
Page 67
-
Scan #82
Page 68
-
Scan #83
Page 69
-
Scan #84
Page 70
-
Scan #85
Page 71
-
Scan #86
Page 72
-
Scan #87
Page 73
-
Scan #88
Page 74
-
Scan #89
Page 75
-
Scan #90
Page 76
-
Scan #91
Page 77
-
Scan #92
Page 78
-
Scan #93
Page 79
-
Scan #94
Page 80
-
Scan #95
Page 81
-
Scan #96
Page 82
-
Scan #97
Page 83
-
Scan #98
Page 84
-
Scan #99
Page 85
-
Scan #100
Page 86
-
Scan #101
Page 87
-
Scan #102
Page 88
-
Scan #103
Page 89
-
Scan #104
Page 90
-
Scan #105
Page 91
-
Scan #106
Page 92
-
Scan #107
Page 93
-
Scan #108
Page 94
-
Scan #109
Page 95
-
Scan #110
Page 96
-
Scan #111
Page 97
-
Scan #112
Page 98
-
Scan #113
Page 99
-
Scan #114
Page 100
-
Scan #115
Page 101
-
Scan #116
Page 102
-
Scan #117
Page 103
-
Scan #118
Page 104
-
Scan #119
Page 105
-
Scan #120
Page 106
-
Scan #121
Page 107
-
Scan #122
Page 108
-
Scan #123
Page 109
-
Scan #124
Page 110
-
Scan #125
Page 111
-
Scan #126
Page 112
-
Scan #127
Page 113
-
Scan #128
Page 114
-
Scan #129
Page 115
-
Scan #130
Page 116
-
Scan #131
Page 117
-
Scan #132
Page 118
-
Scan #133
Page 119
-
Scan #134
Page 120
-
Scan #135
Page 121
-
Scan #136
Page 122
-
Scan #137
Page 123
-
Scan #138
Page 124
-
Scan #139
Page 125
-
Scan #140
Page 126
-
Scan #141
Page 127
-
Scan #142
Page 128
-
Scan #143
Page 129
-
Scan #144
Page 130
-
Scan #145
Page 131
-
Scan #146
Page 132
-
Scan #147
Page 133
-
Scan #148
Page 134
-
Scan #149
Page 135
-
Scan #150
Page 136
-
Scan #151
Page 137
-
Scan #152
Page 138
-
Scan #153
Page 139
-
Scan #154
Page 140
-
Scan #155
Page I
-
Scan #156
Page #156
-
Scan #157
Page II
-
Scan #158
Page #158
-
Scan #159
Page III
-
Scan #160
Page #160
Actions
About this Item
- Title
- An elementary treatment of the theory of spinning tops and gyroscopic motion, by Harold Crabtree.
- Author
- Crabtree, Harold.
- Canvas
- Page viewer.nopagenum
- Publication
- London,: Longmans, Green, and co.,
- 1909.
- Subject terms
- Tops
- Gyroscopes
Technical Details
- Link to this Item
-
https://name.umdl.umich.edu/abr4615.0001.001
- Link to this scan
-
https://quod.lib.umich.edu/u/umhistmath/abr4615.0001.001/16
Rights and Permissions
The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].
DPLA Rights Statement: No Copyright - United States
Related Links
IIIF
- Manifest
-
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abr4615.0001.001
Cite this Item
- Full citation
-
"An elementary treatment of the theory of spinning tops and gyroscopic motion, by Harold Crabtree." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abr4615.0001.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.