Über Beziehungen der Strahlenkomplexe zweiten Grades zu den Flächen zweiter Ordnung ...
Annotations Tools
46 Dieser Ausdruck läßt sich schreibert (F14 - [4 3 a14 (F2 - p)2 + 4 a3 a24 (F3 - 9)2 2 4 a12 as4 (F14 - )2] ~+ 4 a23 a4 4 a2 a ai (F25 - )" + 4 831 a24 (F36 - )2 + 4a12, aa4 (F14 - e)] (F~ -)2 ( )2(F — o ) ( - -- 64a 222 a42 2a31 a 2 2 3 a1,2 a34 a31 a24 Der Zähler des letzten Gliedes dieses Ausdrucks, der übrigens symmetrisch ist und deshalb auch in den Koeffizienten von u2 und v2 vorkommt, verschwindet nach (1), so daß der Koeffizient von;2 jetzt lautet: [4 a23 a14 (F25 - )2 _ 4 as a24 (F3( - ) (F1i4 __ g)) + a (F 2 [4 al, a4- ( 4 a ];31 a24 Der erste Faktor dieses Ausdrucks ist wieder symmetrisch und muß demnach auch in den Koeffizienten von /2 und v2 vorkommen Der zweite Faktor wird bei j'2 und v2 die entsprechende Form haben. Deshalb wird schließlich die rechte Seite des durch die angegebene Erweiterung und Kombination der Gleichungen (4) entstandenen Ausdrucks die Form annehmen: [4 a a14 (F25 - Q)2 + 4 a31 24 (F3- 9)2 +- 4 a12 a34 (F14 - o)21 -[4 a23 a14 -(F14 -- 4 )) 2 (F~-,o)2] (Fa - - e)~1 ~) ^31 a24 +[4 a3~ 24- ] (U2 + [4 a12 a34 - (] ) V. al2 a34 za 23 al 4 Bei dieser Formel verschwindet aber der letzte Faktor nach der Identität ~ 3, (13), so daß also der ganze Ausdruck Null wird.
-
Scan #1
Page #1
-
Scan #2
Page #2 - Title Page
-
Scan #3
Page #3
-
Scan #4
Page #4
-
Scan #5
Page #5
-
Scan #6
Page 5
-
Scan #7
Page 6
-
Scan #8
Page 7
-
Scan #9
Page 8
-
Scan #10
Page 9
-
Scan #11
Page 10
-
Scan #12
Page 11
-
Scan #13
Page 12
-
Scan #14
Page 13
-
Scan #15
Page 14
-
Scan #16
Page 15
-
Scan #17
Page 16
-
Scan #18
Page 17
-
Scan #19
Page 18
-
Scan #20
Page 19
-
Scan #21
Page 20
-
Scan #22
Page 21
-
Scan #23
Page 22
-
Scan #24
Page 23
-
Scan #25
Page 24
-
Scan #26
Page 25
-
Scan #27
Page 26
-
Scan #28
Page 27
-
Scan #29
Page 28
-
Scan #30
Page 29
-
Scan #31
Page 30
-
Scan #32
Page 31
-
Scan #33
Page 32
-
Scan #34
Page 33
-
Scan #35
Page 34
-
Scan #36
Page 35
-
Scan #37
Page 36
-
Scan #38
Page 37
-
Scan #39
Page 38
-
Scan #40
Page 39
-
Scan #41
Page 40
-
Scan #42
Page 41
-
Scan #43
Page 42
-
Scan #44
Page 43
-
Scan #45
Page 44
-
Scan #46
Page 45
-
Scan #47
Page 46
-
Scan #48
Page 47
-
Scan #49
Page 48
-
Scan #50
Page 49
-
Scan #51
Page 50
-
Scan #52
Page 51
-
Scan #53
Page 52
-
Scan #54
Page 53
-
Scan #55
Page 54
-
Scan #56
Page 55
-
Scan #57
Page 56
-
Scan #58
Page 57
-
Scan #59
Page 58
-
Scan #60
Page 59
-
Scan #61
Page 60
-
Scan #62
Page 61
-
Scan #63
Page 62
-
Scan #64
Page 63
-
Scan #65
Page 64
-
Scan #66
Page 65
-
Scan #67
Page 66
-
Scan #68
Page 67
-
Scan #69
Page 68
-
Scan #70
Page 69
-
Scan #71
Page 70
-
Scan #72
Page 71
-
Scan #73
Page 72
-
Scan #74
Page 73
-
Scan #75
Page 74
-
Scan #76
Page 75
-
Scan #77
Page 76
-
Scan #78
Page 77
-
Scan #79
Page 78
-
Scan #80
Page 79
-
Scan #81
Page 80
-
Scan #82
Page 81
-
Scan #83
Page #83
Actions
About this Item
- Title
- Über Beziehungen der Strahlenkomplexe zweiten Grades zu den Flächen zweiter Ordnung ...
- Author
- Düker, Willy, 1887-
- Canvas
- Page 40
- Publication
- Rostock,: C. Boldt,
- 1910.
- Subject terms
- Complexes
Technical Details
- Link to this Item
-
https://name.umdl.umich.edu/abn7924.0001.001
- Link to this scan
-
https://quod.lib.umich.edu/u/umhistmath/abn7924.0001.001/47
Rights and Permissions
The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].
DPLA Rights Statement: No Copyright - United States
Related Links
IIIF
- Manifest
-
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn7924.0001.001
Cite this Item
- Full citation
-
"Über Beziehungen der Strahlenkomplexe zweiten Grades zu den Flächen zweiter Ordnung ..." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn7924.0001.001. University of Michigan Library Digital Collections. Accessed May 15, 2025.