Über Beziehungen der Strahlenkomplexe zweiten Grades zu den Flächen zweiter Ordnung ...
Annotations Tools
37 0all --- a23 2; cr1i = aI.,3 asl; al3 —: a23 a12 a 14- a12 a4 — a a2; a15... a a24; a1 - 2 a234; a22 -- 31; a23 -- (31 a12; a24 a31 a14; (4) -25 = 2 a4 a a a a (4f a25-a23 14 -12 34; 726 a1 34 a33 -= — a12; G134 -- al a14; a 5-l a2 a24; a 36 a31 a24 -a23 14; a44 -- a42 a 45 -- a a24 a46 -- a4 a 3 55- a24; a 56==- a24 a34 a66 -- a34 Damit erhalten wir nach ~ 3, (4) der Einleitung für die Koordinaten der Erzeugenden der Fläche (1) folgende Gleichungen: (a14 -- Q) Pl +1 a31 a4 2 a14 2 - a2 4 p - a2 4 - a24 a14 p - a14 a34 p46 = 0; -- 3 a24 Pl + (a25 -- ) p2 + a2 a24 P - a14 a24 P4 a24 P5S a24 a34 P = 0; a23 a34 P - a3 a34 P2 + (a36 - e) P3 - a14 a'4 P4 ( —5 a24a34p5- a342P6=0; - a23p2 p)1 + 31 a23 P, + a12 a2 3 )3 + (a14 - ) P4 -- aa23 P5 + a34a23 P6 - 0; a23 a31 Pl a32 P2 + a12 a31 P3 + a14 a31 4 + ((25 -- Q) P5 - a34 a31 P6 = 0; a23 al Pl + a,1 al2 P2 - a12 p - a14 al I P4 a24 a12 P5 + (3 -- ) [)6- = 0 Hierbei hat nach ~ 3, (6) Einleitung e die beiden Werte: (6) ==+ VA; e VA, je nach der Erzeugung, die wir betrachten. A hat dabei den Wert (3). Wir werden im Verlaufe der folgenden Entwicklung sehen, daß die Gleichungen (5) in Übereinstimmung mit dem, was wir in der Einleitung Seite 18 bemerkten, in der Tat nur für drei unabhängige zählen.
-
Scan #1
Page #1
-
Scan #2
Page #2 - Title Page
-
Scan #3
Page #3
-
Scan #4
Page #4
-
Scan #5
Page #5
-
Scan #6
Page 5
-
Scan #7
Page 6
-
Scan #8
Page 7
-
Scan #9
Page 8
-
Scan #10
Page 9
-
Scan #11
Page 10
-
Scan #12
Page 11
-
Scan #13
Page 12
-
Scan #14
Page 13
-
Scan #15
Page 14
-
Scan #16
Page 15
-
Scan #17
Page 16
-
Scan #18
Page 17
-
Scan #19
Page 18
-
Scan #20
Page 19
-
Scan #21
Page 20
-
Scan #22
Page 21
-
Scan #23
Page 22
-
Scan #24
Page 23
-
Scan #25
Page 24
-
Scan #26
Page 25
-
Scan #27
Page 26
-
Scan #28
Page 27
-
Scan #29
Page 28
-
Scan #30
Page 29
-
Scan #31
Page 30
-
Scan #32
Page 31
-
Scan #33
Page 32
-
Scan #34
Page 33
-
Scan #35
Page 34
-
Scan #36
Page 35
-
Scan #37
Page 36
-
Scan #38
Page 37
-
Scan #39
Page 38
-
Scan #40
Page 39
-
Scan #41
Page 40
-
Scan #42
Page 41
-
Scan #43
Page 42
-
Scan #44
Page 43
-
Scan #45
Page 44
-
Scan #46
Page 45
-
Scan #47
Page 46
-
Scan #48
Page 47
-
Scan #49
Page 48
-
Scan #50
Page 49
-
Scan #51
Page 50
-
Scan #52
Page 51
-
Scan #53
Page 52
-
Scan #54
Page 53
-
Scan #55
Page 54
-
Scan #56
Page 55
-
Scan #57
Page 56
-
Scan #58
Page 57
-
Scan #59
Page 58
-
Scan #60
Page 59
-
Scan #61
Page 60
-
Scan #62
Page 61
-
Scan #63
Page 62
-
Scan #64
Page 63
-
Scan #65
Page 64
-
Scan #66
Page 65
-
Scan #67
Page 66
-
Scan #68
Page 67
-
Scan #69
Page 68
-
Scan #70
Page 69
-
Scan #71
Page 70
-
Scan #72
Page 71
-
Scan #73
Page 72
-
Scan #74
Page 73
-
Scan #75
Page 74
-
Scan #76
Page 75
-
Scan #77
Page 76
-
Scan #78
Page 77
-
Scan #79
Page 78
-
Scan #80
Page 79
-
Scan #81
Page 80
-
Scan #82
Page 81
-
Scan #83
Page #83
Actions
About this Item
- Title
- Über Beziehungen der Strahlenkomplexe zweiten Grades zu den Flächen zweiter Ordnung ...
- Author
- Düker, Willy, 1887-
- Canvas
- Page 20
- Publication
- Rostock,: C. Boldt,
- 1910.
- Subject terms
- Complexes
Technical Details
- Link to this Item
-
https://name.umdl.umich.edu/abn7924.0001.001
- Link to this scan
-
https://quod.lib.umich.edu/u/umhistmath/abn7924.0001.001/38
Rights and Permissions
The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].
DPLA Rights Statement: No Copyright - United States
Related Links
IIIF
- Manifest
-
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn7924.0001.001
Cite this Item
- Full citation
-
"Über Beziehungen der Strahlenkomplexe zweiten Grades zu den Flächen zweiter Ordnung ..." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn7924.0001.001. University of Michigan Library Digital Collections. Accessed May 15, 2025.