Théorie et applications des équipollences, par C. A. Laisant.

254 254 ~SECONDE PARTIE. - CIIAPITIIE VIII. dro ns C"- X, O'y. La transformation es t uniforme et clle est aussi 6'vidernment monogene. Si des points X se suce'dent en progression par diff6 -rence, leurs transforme'es Y formeront une progression Fig. 65. A, par quotient. Ceei nouLs montre que toute droite se transforinera en tine spirale logarithmniqtie ayant pour pAle 1'origine. Deux points 13, B, 6'tant donnes, cherehons les points A, A, dont its sont les transforme's. On aura B -- CA, B1 CAl, et par division Bli -A C eA, B Si done Th mrPU, il s'ensuit qu'on obtient B AA, - login? -+-i-L gr AA, ~(lo g n)2 -+-,I 2, inc AA, are tang lgi Cette dernie're valeur sera pre'cise'rnent 1'inclinaison de

/ 331
Pages

Actions

file_download Download Options Download this page PDF - Pages 238-257 Image - Page 254 Plain Text - Page 254

About this Item

Title
Théorie et applications des équipollences, par C. A. Laisant.
Author
Laisant, C.-A. (Charles-Ange), 1841-1920.
Canvas
Page 254
Publication
Paris,: Gauthier-Villars,
1887.
Subject terms
Coordinates

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn7895.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn7895.0001.001/277

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn7895.0001.001

Cite this Item

Full citation
"Théorie et applications des équipollences, par C. A. Laisant." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn7895.0001.001. University of Michigan Library Digital Collections. Accessed June 24, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.