Théorie et applications des équipollences, par C. A. Laisant.

APPLICATIONS A LA THUORIE DES COURBES. 23i De la t D2 Mi izt is i t I -- _ --- r -_ — t -- - tang - - t. OM iD, I +st t t a 2 ~2 - E 2 Ainsi (155) )X -, et le rayon de courbure (6) MR = -m iM =.i M - 2MN s'obtient en prolongeant la normale MN d'une longueur egale a elle-meme. La developpee a pour equipollence,(7 ) r\ I RIa = M -- I 2 a i 'M it i- t- izt; c'est evidemment une cycloide egale a la premiere. Fig. 63. R\ S \ / C.9. P La developpee imparfaite (157) sera determinee par la valeur sin acMRs z Si I MS = = 2 sin ac (i +- s' s),

/ 331
Pages

Actions

file_download Download Options Download this page PDF - Pages 218-237 Image - Page 231 Plain Text - Page 231

About this Item

Title
Théorie et applications des équipollences, par C. A. Laisant.
Author
Laisant, C.-A. (Charles-Ange), 1841-1920.
Canvas
Page 231
Publication
Paris,: Gauthier-Villars,
1887.
Subject terms
Coordinates

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn7895.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn7895.0001.001/254

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn7895.0001.001

Cite this Item

Full citation
"Théorie et applications des équipollences, par C. A. Laisant." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn7895.0001.001. University of Michigan Library Digital Collections. Accessed June 18, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.