Théorie et applications des équipollences, par C. A. Laisant.

202 SECONDE PARTIE. - CIIAPITRE VII. pollence representera un second systeame de courbes tout a fait diffTrent du premier. Si l'on cherche leur enveloppe, on retombera encore sur les relations (3i) et (32). Done les deux systemes de courbes representees par l'equipollence (3o) ont meme enveloppe. Trajectoires orthogonales ou obliques. '167. Reprenons l'equipollence (30) i = (t, ), ou ' est le parametre variable de courbe a courbe, et proposons-nous de trouver une courbe qui coupe Loutes celles-la sous un angle a qui peut etre constant ou bien fonction de ', c'est-a-dire variable d'une courbe a une autre. Nous verrions, comme au numnero prdcedent, cue l'equipollence (3o) representera la trajectoire cherchee, pourvLn que t et T soient lies par une relation convenable. C'est cette relation qu'il s'agit de trouver. La tangente a la trajectoire sera (-M == Oi c) -T- ' ci ci et la condition du probleme est (J3 t nI c'est-a-dire O6tM cdt I l ) - i t (40tII cit Ecrivanlt comme ci-dessus OI — = c -- i, celte relation devient 1(+ (C + i~)c- II -: y

/ 331
Pages

Actions

file_download Download Options Download this page PDF - Pages 198-217 Image - Page 202 Plain Text - Page 202

About this Item

Title
Théorie et applications des équipollences, par C. A. Laisant.
Author
Laisant, C.-A. (Charles-Ange), 1841-1920.
Canvas
Page 202
Publication
Paris,: Gauthier-Villars,
1887.
Subject terms
Coordinates

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn7895.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn7895.0001.001/225

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn7895.0001.001

Cite this Item

Full citation
"Théorie et applications des équipollences, par C. A. Laisant." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn7895.0001.001. University of Michigan Library Digital Collections. Accessed June 22, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.