Théorie et applications des équipollences, par C. A. Laisant.

94 SECONDE PARTIE. - CHAPITRE VII. Developpantes. 160. Nous definissons la developpante d'une courbe donnee comme la trajectoire orthogonale de ses tangentes. Si done M est ln point de la courbe donnee, N le point correspondant de la developpante consideree, (DN devra etre perpendiculaire ta (32. Mais nous avons Y - M = q (aM, 62N — = 3I - q ( a +- q W Mt. I1 faut done, en posant, comme precedemment,. + I ),, qu'on ait I + 3c~q - ql - o. Pour integrer cette equation differentielle, ecrivons tout d'abord u = f cdt, d'ou ciu — = I dt, puis elt ==y, cld'oi dc -i- L'equation deviendra y dt - y dq -+ q dy = o 0 U ou ydt - d(qy) = o. De la qy = — Y dt, (2a) q =- y-' f'y dt = - e-J'ldtf eJ i t, et l'equipollence de la developpante est, (21) N = M -- q (]DM, 161. Si l'equipollence de la courbe est donnce sous

/ 331
Pages

Actions

file_download Download Options Download this page PDF - Pages 178-197 Image - Page 194 Plain Text - Page 194

About this Item

Title
Théorie et applications des équipollences, par C. A. Laisant.
Author
Laisant, C.-A. (Charles-Ange), 1841-1920.
Canvas
Page 194
Publication
Paris,: Gauthier-Villars,
1887.
Subject terms
Coordinates

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn7895.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn7895.0001.001/217

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn7895.0001.001

Cite this Item

Full citation
"Théorie et applications des équipollences, par C. A. Laisant." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn7895.0001.001. University of Michigan Library Digital Collections. Accessed June 16, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.