Théorie et applications des équipollences, par C. A. Laisant.

APPLICATIONS AUX POLYGONES. 3 Prenons le point O precisement a l'intersection des deux diagonales AC, BD. Nous aurons (fig. 4 ) DAB ABC BCD CDA 3OG= OA ABD +- OB -ABCD OC AB - OD AB ABCD ABCD ABGD ABCD AO BO CO DO =OA + OB 1- -- OC C + OD A- B AC BD CA AB comme on le voit immediatement sur la figure. Fig. 4. A Cette valeur peut s'ecrire OC2 — OA2 OD2 OB2 3OG - - OA OD B = OA - OB - OC OD. Ceci demont re que le barycentre du quadrilatere n'est auLre que celui des cinq poids I, i, i, I, I, places respectivement en A, B, C, D, O. Barycentre d'un polygone. 117. En appliquant a un polygone quelconque ABC... JK la methode que nous venons de suivre pour obtenir le barycentre du quadrilatere, mais en prenant pour origine un point interieur O arbitraire, on a A — B K-+- A OAB —... OK- A = G.ABC... K 3 3

/ 331
Pages

Actions

file_download Download Options Download this page PDF - Pages 118-137 Image - Page 131 Plain Text - Page 131

About this Item

Title
Théorie et applications des équipollences, par C. A. Laisant.
Author
Laisant, C.-A. (Charles-Ange), 1841-1920.
Canvas
Page 131
Publication
Paris,: Gauthier-Villars,
1887.
Subject terms
Coordinates

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn7895.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn7895.0001.001/154

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn7895.0001.001

Cite this Item

Full citation
"Théorie et applications des équipollences, par C. A. Laisant." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn7895.0001.001. University of Michigan Library Digital Collections. Accessed June 22, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.