Involuties op rationale krommen ...
Annotations Tools
II ~ 5. CONSTRUCTIES. Zoodra op een kegeisnede twee paren Al, A2 'en B1, B2 gegeven zijn, is een 12 bepaald, d. w. z. dat we dan alle paren kunnen vinden. Zoek slechts het snijpunt 1/ der lijnen Al, A2 en B1, B2. ledere willekeurige lijn door ilTlzal dan een ander paar der involutie bevatten. Dit punt Mi is niets anders dan het reeds besprokene kiassepunt der ontaarde involutiekromme. De cubisehe involutie is door twee drietallen (A) en (B) bepaald. Hoe vinden we dan de overige drietallen? Daartoe nemen we op de kegeisnede het punt P willekeurig aan. De twee ontaarde kegeisneden (P Al, A2 A3) en (P B1, B2B3) bepalen de vier grondpunten P, Q, R, S van een bundel. Omdat nu e'e'n der basispunten ni. het punt P 6'p de kegeisnede is gelegen, zullen de exemplaren van den bundel eene 13 voortbrengen op de kegelsnede van uitgang. De ontaarde kegeisnede (QS, PR) levert een 3e groep (C.) Is nu op de kegeisnede eene eubisehe involutie gegeven door de beide groepen (A) en (B) dan is het mogelijk het drietal te bepalen waarvan e'e'n punt C3 vooruit aangewezen is. De lijuen A2 A3 en B2B3 bepalen het punt S. Trek nu C3 S dan snijdt deze lijn het punt P in. De reebte Q A1 en P B1 geven nu op B2 B3 en A2A3 de plaats der basispunten Q en R aan. Trek nog Q R en men vindt de punten C1 en C2 die met het vooraf bepaalde punt C3 eene groep vormen. Geef C3 telkens anderen standen, dan zijn op deze wijs alle groepen der 13 te verkrijgen. Men kan ook uit deze construetie zien dat de 13 door e'en drietal (A) en twee paren B2, B3 en C1, C2 volkomen bepaald is. Immers deze bepalen het punt Q. De lijn A1 Q geeft 't punt P. Het punt S wordt gevonden als het snijpunt van A2A 3 en B2 B3, terwiji A2 A3 door C1 C2 in het vierde basispunt K wordt gesneden, xvaardoor de bundel weder bekend is. Voor de biyiuaclra/isc/he invob/die geldt ongeveer dezelfde
-
Scan #1
Page #1
-
Scan #2
Page #2 - Title Page
-
Scan #3
Page #3
-
Scan #4
Page #4
-
Scan #5
Page #5
-
Scan #6
Page #6
-
Scan #7
Page #7 - Title Page
-
Scan #8
Page #8
-
Scan #9
Page #9 - Title Page
-
Scan #10
Page #10
-
Scan #11
Page #11
-
Scan #12
Page #12
-
Scan #13
Page VII - Table of Contents
-
Scan #14
Page VIII - Table of Contents
-
Scan #15
Page 1
-
Scan #16
Page 2
-
Scan #17
Page 3
-
Scan #18
Page 4
-
Scan #19
Page 5
-
Scan #20
Page 6
-
Scan #21
Page 7
-
Scan #22
Page 8
-
Scan #23
Page 9
-
Scan #24
Page 10
-
Scan #25
Page 11
-
Scan #26
Page 12
-
Scan #27
Page 13
-
Scan #28
Page 14
-
Scan #29
Page 15
-
Scan #30
Page 16
-
Scan #31
Page 17
-
Scan #32
Page 18
-
Scan #33
Page 19
-
Scan #34
Page 20
-
Scan #35
Page 21
-
Scan #36
Page 22
-
Scan #37
Page 23
-
Scan #38
Page 24
-
Scan #39
Page 25
-
Scan #40
Page 26
-
Scan #41
Page 27
-
Scan #42
Page 28
-
Scan #43
Page 29
-
Scan #44
Page 30
-
Scan #45
Page 31
-
Scan #46
Page 32
-
Scan #47
Page 33
-
Scan #48
Page 34
-
Scan #49
Page 35
-
Scan #50
Page 36
-
Scan #51
Page 37
-
Scan #52
Page 38
-
Scan #53
Page 39
-
Scan #54
Page 40
-
Scan #55
Page 41
-
Scan #56
Page 42
-
Scan #57
Page 43
-
Scan #58
Page 44
-
Scan #59
Page 45
-
Scan #60
Page 46
-
Scan #61
Page 47
-
Scan #62
Page 48
-
Scan #63
Page 49
-
Scan #64
Page 50
-
Scan #65
Page 51
-
Scan #66
Page 52
-
Scan #67
Page 53
-
Scan #68
Page 54
-
Scan #69
Page 55
-
Scan #70
Page 56
-
Scan #71
Page 57
-
Scan #72
Page 58
-
Scan #73
Page 59
-
Scan #74
Page 60
-
Scan #75
Page 61
-
Scan #76
Page 62
-
Scan #77
Page 63
-
Scan #78
Page 64
-
Scan #79
Page 65
-
Scan #80
Page 66
-
Scan #81
Page 67
-
Scan #82
Page 68
-
Scan #83
Page 69
-
Scan #84
Page 70
-
Scan #85
Page 71
-
Scan #86
Page 72
-
Scan #87
Page 73
-
Scan #88
Page 74
-
Scan #89
Page 75
-
Scan #90
Page 76
-
Scan #91
Page 77
-
Scan #92
Page 78
-
Scan #93
Page 79
-
Scan #94
Page 80
-
Scan #95
Page 81
-
Scan #96
Page 82
-
Scan #97
Page 83
-
Scan #98
Page 84
-
Scan #99
Page 85
-
Scan #100
Page 86
-
Scan #101
Page 87
-
Scan #102
Page 88
-
Scan #103
Page 89
-
Scan #104
Page 90
-
Scan #105
Page 91
-
Scan #106
Page 92
-
Scan #107
Page 93
-
Scan #108
Page 94
-
Scan #109
Page 95
-
Scan #110
Page 96
-
Scan #111
Page 97
-
Scan #112
Page 98
-
Scan #113
Page 99
-
Scan #114
Page 100
-
Scan #115
Page 101
-
Scan #116
Page 102
-
Scan #117
Page 103
-
Scan #118
Page 104
-
Scan #119
Page 105
-
Scan #120
Page 106
-
Scan #121
Page 107
-
Scan #122
Page 108
-
Scan #123
Page 109
-
Scan #124
Page #124
-
Scan #125
Page #125
-
Scan #126
Page #126
Actions
About this Item
- Title
- Involuties op rationale krommen ...
- Author
- Vreeswijk, Johannes Adrianus, jr.
- Canvas
- Page 7
- Publication
- Utrecht,: Stommdrukkerij "De Industrie" J. van Druten,
- 1905.
- Subject terms
- Involutes (Mathematics)
Technical Details
- Link to this Item
-
https://name.umdl.umich.edu/abn7699.0001.001
- Link to this scan
-
https://quod.lib.umich.edu/u/umhistmath/abn7699.0001.001/25
Rights and Permissions
The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].
DPLA Rights Statement: No Copyright - United States
Related Links
IIIF
- Manifest
-
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn7699.0001.001
Cite this Item
- Full citation
-
"Involuties op rationale krommen ..." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn7699.0001.001. University of Michigan Library Digital Collections. Accessed May 17, 2025.