Plane trigonometry, by S.L. Loney.

CALCULATION OF 7r. 399 Hence, by subtraction, Lo1 +itanO Log t = 2 (p q) r+ 2i [tan 0 - tan3 0+......(1). I - 1 tan 0 a GS^+ l ~ But Log l+ i tan0 [cos 0 + i sin O 1 - i tan 0 [os 0 - i sill = Log (cos 0 + i sin 0)2= Log [cos 20 + i sin 20] = 2r ri + i 28................................................... (2), where r is an integer. Some one of the values of the right hand of (1) must therefore be equivalent to some one of the values on the right hand of (2). Hence, by equating and putting r-p+q=n, we must have, for some integral value of n, the relation 1 1 8 + n7r = tan 0 - 3 tan3 0.+ tan5 -.... 3 5 If we consider principal values only of the logarithms then in (1) both p and q are zero and tan 0 is numerically less than unity. Also, by Art. 333, the value of r in (2) is zero and 0 lies between 7r 7r -- and + 2 22 Combining these two statements we see that'p, q, and r are zero, and therefore n is zero, when 0 lies between - and + - 4 4* 346. Value of 7r. One of the chief uses of Gregory's series is its application to find the value of 7r. In Art. 344 put x= 1, and we have rr '1. 1 1' 1 4 3 5 7 9 24 1:3+^5_7+9...... =1 - 3 5 (7 9+ 111+ 13...A = 1 -2 [3 i+779 +11.13 +. 1 J This series may be used to calculate vr; its defect however is that the successive terms do not rapidly

/ 534
Pages

Actions

file_download Download Options Download this page PDF - Pages 397-416 Image - Page 397 Plain Text - Page 397

About this Item

Title
Plane trigonometry, by S.L. Loney.
Author
Loney, Sidney Luxton, 1860-
Canvas
Page 397
Publication
Cambridge [Eng.]: University press,
1893.
Subject terms
Plane trigonometry.

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn7298.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn7298.0001.001/423

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn7298.0001.001

Cite this Item

Full citation
"Plane trigonometry, by S.L. Loney." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn7298.0001.001. University of Michigan Library Digital Collections. Accessed May 2, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.