Plane trigonometry, by S.L. Loney.

[Exs. XV.] TANGENT OF THE SUM OF TWO ANGLES. 99 Prove that 0. 70 30. 110 5. sin ssmn -+ sin- sinm -= sin 20 sin 50. 2 ~ 2 2 0 90 5O 6.os cos2cos - cos 30 cos -= sin 50 sin. 2 2 2 7. sin A sin (A + 2B) - sin B sin (B +2A) = sin (A - B) sin (A + B). 8. (sin 3A + sin A) sin A + (cos 3A - cos A) cos A =0. 2 sin (A - C) cos C - sin (A - 2C) sin A 2 sin (B - C) cos C- sin (B - 2C) sin B' sin A sin 2A + sin 3A sin 6A + sin 4A sin 13A 10. = tan 9A. sin A cos 2A + sin 3A cos 6A + sin 4A cos 13A 9. cos 2A cos 3A - cos 2A cos 7A + cos A cos 10A 11. = cot 6A cot 5A. sin 4A sin 3A - sin 2A sin 5A + sin 4A sin 7A A 12. cos (36~ - A) cos (36~ + A) + cos (54~ + A) cos (54~ - A) =cos 2A. 13. cos A sin (B - C) + cos B sin (C - A)+cos C sin (A - B) =0. 1 14. sin (45 +A) sin (45 -A) = cos2A. 15. versin (A + B) versin (A - B) = (cos A - cos B)2. 16. sin ( -y) cos (a - 6) + sin (y - a) cos ( - ) + si (a - ) cos ( - ) = 0. 1 c r 97r 37r 57r - 17. 2cos 1c os +cos +cos=0. tan A + tan B 98. To prove that tan (A + B) = tan A +ta and I -tan A tan B'- tan that tan (A - B)1 = tan A-tan B 1 + tan A tan B By Art. 88, we have, for all values of A and B, B sin (A + B) sin A cos B + cos A sin B cos (A + B) cos A cos B - sin A sin B sin A sin B oA cosA c B sin A sin B' by dividing both cos A cos B numerator and denominator by cos A cos B. tan A + tan B tan (A+B)== - A — -tan A tan B 7-2

/ 534
Pages

Actions

file_download Download Options Download this page PDF - Pages 97-116 Image - Page 97 Plain Text - Page 97

About this Item

Title
Plane trigonometry, by S.L. Loney.
Author
Loney, Sidney Luxton, 1860-
Canvas
Page 97
Publication
Cambridge [Eng.]: University press,
1893.
Subject terms
Plane trigonometry.

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn7298.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn7298.0001.001/123

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn7298.0001.001

Cite this Item

Full citation
"Plane trigonometry, by S.L. Loney." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn7298.0001.001. University of Michigan Library Digital Collections. Accessed May 2, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.