Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.

1 81. )1 1) / ' I~~~t 11it S A C~~~~A A t -~~~~e ~ wJIL icr c.e & e'/ - coiynegue'C ra rzz Jap~ c wix- c/ezt- [c ~ Iced A i-B GI el A 27 ~ q ~ f a a u / & L I z a i a~~~~ m e -a - e nctit LT v R +C I, ~+ v +yv '~-l +o c~~n~ ~ u~ + p~v24y +~~R2+ d~uL *,2 / Oh 1 cm - ela cb ex cdeni a m-1 f/a/ar Ac L#- L ' ' ) t w- a - C(- ( u ~ '-c. + w i. 46 K fr (a 'uw+ b -v 4 C!w. i) + S,.6/ice ~uaLI iak- ai-U t- /ie iaxcel Zamo C - A C, MO3, awtt Plat varAdcirz — c Cej 14L a L/I ae za -L e- y e rizw_ A o 7-ie- toc:: l O ki - L*C/ice- c/u Jeacart _ acJ aez p aaia rd' Ipazz /- z J p t p- i ~ z A, B, C, D *, 3 ~, Q., pl6L~~k~ara~~- 1 La~rtatU F-ua Cw /af- im tAa m djj, 7 C % P, 1 -u ~ e r clC /ei Jt7 & dec ni v e 47 ez1 e t J t czj I~~~~~~~~~~~~~~~~ C eZ,~ 1-7 (1 I), (jil;l)e /c (\III)/ td akler(Iotnda f-6rckJ /a wacom 66,en aw ~~~ ~2, C~~~, IDE. A,~~~~, 2- (V) i-rLU 4 -~rL-V + p W 4 + 1I+ t- I C '4 VI'?'W ' 1-,-Ajx -VL" + ' W? 0 e ffc ~ac aL exfLtrne__-YLL11 a ~umea e [cc__1ei CactVco Ae Jt/IavceJ Lie- aix~- -,, int A 13 C.I) A., C A IIB2 C, a plan- at-'bltraire'.-,i ~ fl C 1 J~ c t/ d t a J 7 a~ Ii/ <io c e1 1 U 7 0 1 e A i X > T o i ni/h e r0n- - u nJ- a u.a a arc eite- ~ 6 / ~ b r t z z ~ ~ / ~ 3 J u c e - ~ ~ ~ ~, 1 a a j c i w b a r - le _j L 7 p o iuAiA-e, c u, A j- -, ct) Je n art -e-, pajj a ac _ i-/o5 b A p3 C4,D; N-,tl -~~L A z a -paiJecu 1p cm e tk le i ~ r cpac j Ii J.0 MoIdz A -IPIG,ID A 1) Ih.B ~ D I;, A 2, 7 ,B _ C4 F a z-n CWn~ tuzI cL 4 L ~ c aa i i -. C > L. ~ l z iV calcS 3 t4 I 3C LLat x - tttcfLe -r u L ivi-c r- it- r — -sa 4-a-c at' t J o vutJcrr41rct orc-I L i —. ~ A 1 3, C 13 X A,, G, I ), ~ O ~ t ~ a L vp I Y r- a ~ i e < i i w j a ~ c z a j a ~ ~ n - - t i ~ r - ~ K q t k - c o a ) c t ~ 1 Ct p z P "hCre-:iff i it h r - - t 4 i 4 u&r- 7 A L L 4zC 01 4 d -c:1L-' lea A a a x rc~ c e T e-t V - aa. 3c t.ac it c E it - A zz ~-tC a k - cxC - 6 p p o c -L- e- C u c & ) e { e- utn e-.5 -m -v) L hZ ~ YC -c 'clp a qie. l4 cjU F ' - ciice6 Ae- 17' cm ie~ —1;-z c~cLt z r- cZ ac-n

/ 961
Pages

Actions

file_download Download Options Download this page PDF - Pages 174-193 Image - Page 174 Plain Text - Page 174

About this Item

Title
Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.
Author
Painvin, M. (Louis Felix), 1826-1875?
Canvas
Page 174
Publication
Douai,: Imp. A. Robaut,
1869-71.
Subject terms
Geometry, Analytic -- Solid

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn6069.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn6069.0001.001/648

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn6069.0001.001

Cite this Item

Full citation
"Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn6069.0001.001. University of Michigan Library Digital Collections. Accessed May 4, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.