Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.

-onrl deitc poinb imaj znaiLre crztyZteiL-. 2ie. eyza/iotn ILL dpremc7zz deree a- co uer,// c cebl& (2) Ac +By -t Cz+ =o, ejk cLan C>; ee& eitatiTh C edjte,parc L coo'caonrnee ac 'ine. izrfe l.c pointb relC; /e/ esaetr L.Ia/ /ed co0ncnneed!t ine iin/fti Jpokikrtb tlmTaarnaLe; 7t4, cia,iL un- oinli LinwaJziaVC(iduc~' uri cc pazn c4tf> worCed/port7i %/otrc a uo t ploint ihLnai couytwuget (tjit te' Jz c Ime-e l). Y l /ieJ coreffricnb de '/uahion_ (2) Jieownt idn azainih, noa hrozn tuc ue kuatiorln ) repeaeni tn-pP Jc)io / 'cnd ar led plalut imaLini1ured ei rernmazyued ituva"ied: 1' JuI. C. a wOUwc tine& dcoiLef zeelle JirteeJ.te tz plazn tiae.We, el lr- enzI a. qu,-nc 6 yi l /wnmezjteanDytia7Zzc!' ett-e/rzje een ca7j Cn. et;el f &r^ meUa-nt ic^ i ~ntired en. e;encc, iu9Lt4ioiOL^ I Wnp/a un at Ttiic i e C ^'&c'' or ck- euyzz iaioT e 'tznetrlme7lt eri eba L e ao'c.^rrtt d~ e k.loife ce., d.inkisertwrcu dc rrat,/. ia A A,x+ 1By Ct + D, =o. 2. S* itn pAln zima4ztnfar i, nei eitJa( y aioi& Jae'cl i raekleo; car J'iIt aat ie i,tfed 'oi cedele, c/ aLylizj o. ef J&e4 e/uZLaiona cttzL- p're7niecyrc-L e a ceftenble reLA I x+By - I + D o;ep recilmzt 1in kliaif re dc yziantort uedepeea 1e coordonnrie I 'z- iMrl /J d c" foi deonh feeL&; e/ eozdtz id e/<ra led <eoronnee d ufl ne in/u i /t depoit7b Izimarinjtrced; mncazi ttnporz tmn/eirinzzr(a fJ ie anL- Za- d^edS) c(?/drZ9 lmouzzo tt7L pointZ irfnatytttireco {i ( I (dieif uiarL neirnrn dcroike). '4cde7U iL coei cln/b lej iudiriz- (5) Jeeon1t ti ruc no zzci ImcruL1.qtzed eyuatwzi r- 5) ccApoeae-l t W@>^c -o-JuC e fca& artnned remiawue4 erantied: 1~ C.-eaevlj in ~ apa' j,poirUf 'eeL ft 2nea coikirnarjtaeJe le ee (6)8; (_+rL16)z+(qtq-;X6) (7) =o,on'c t Cnceteara- ii a-' /J pa4 ce /cott C' JWte & Ji ue iikc^ imftrzaite dce //eace -.c /,enz e, c. re t conc/tt wrL 7 elI elte/ ui ( a6 e1enonce~ ~L c,, | ) de/y "l& rta1e,, er:+o, 7aceWoc, a uLt ajtZelSec levopcvahwo Cal- CDtOnouiC Ir n ac oni/po eifa'tj Jie C zit pi w 'e$ Jc ~oi ijmatiLacw (i6) poe'ra urpointt reel, Jil Jecotn Iyr'WgrLp e/ ded cci tind (7) uznmz- SmEmeztA &tpoucr Z; l1. n cuL mec, ienzd atej lexok re4Z/e, J 'ed,.j.ere'mpemr aLt ha zdela/(L- 7-F/ /7zyaZ1eLg /ti, -:./ ~ ~ j e 7;/: /. Jetearmnentt - /cl acei z nnee; je tencotCenif; cen7c condition edt nec aei, el-ct ef/a rC<. = ci (6) nc/ eMat pa/ 7aoe)4 -x dlet- poinb c; a- i/y-4it poAceZ Ia yeme (7) Urnt leeooLjdioniL-; orz cea. ne,7eu1 doe -ietL^, coirunic- OIL le- vo /part- Pai/e, i zlea u za n wcez ip t c/ed e~yadttic~ (6)' i ai ce -/ 'ai t alWsi Aienita p T}c^ 2? Zline I'ctiw, f /?) / parZ aa.te tnd y7i f tSn fcory c lf zee4

/ 961
Pages

Actions

file_download Download Options Download this page PDF - Pages 34-53 Image - Page 34 Plain Text - Page 34

About this Item

Title
Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.
Author
Painvin, M. (Louis Felix), 1826-1875?
Canvas
Page 34
Publication
Douai,: Imp. A. Robaut,
1869-71.
Subject terms
Geometry, Analytic -- Solid

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn6069.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn6069.0001.001/56

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn6069.0001.001

Cite this Item

Full citation
"Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn6069.0001.001. University of Michigan Library Digital Collections. Accessed May 4, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.