Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.

36S 3 0f S.7-oippr o- o 1't4) tu' VF ir-.-r,:pctl.^,,on c utcp,?.- _-7. otcu gizic cekl al/ ut-t -i/t - zi; e '1-cppaclz d~ co4&lefrtLb d4. -x., '- i,ai - I r7_e 'erJ eu', a I 4eqz - (I), 3sazTai co '{a retlb uf/ll u ooGLCtIL rr-u m, UMe -a- o.B -'A'n.Ar J -BTI-A" cn'aLz. p w A;n 4-, _'-a --- —---—. Con-uo,.t.:i_, ---------- coFort^vit; A Tr + T "f.+ tB' A m+ 4 t"n.+ ~' (ain). I"- w'D.) _ 7 (ATTi+Si^ rrL+ ' ~ ' A t-Br) ~(1' rm-1BrL-1-N -') o A ----] A cd'l —~.,:[~o~[e:, orz_ deAwr~a_-a. o t. _ -, 2e-e, — d-,l (A - +" t —"b + t1') 4 + (j"tn.+A'irL +) +( 'm_ + B C+ =') (Al) B+'+ B A, B A". ce/S~- dtro~lc X orz~ Semr,-a. aL~6;C (J 722e b -- JL~1 — nI f- n (AtA B" AB' AB B" C (IV) B" A' B -/ B" A ' C1=o; C('et e-p'cL-net AY' {9eo p dALn3'4 Cerzx< POxTt p+a-" +ir -c P5.iipprri ertFL que- tbut6 -eb CT? t 'rr+t uL p. C p or + C C-litic cedlt, iL r teil.' // deS lee 0a41po1Ab dJee cir e Ze/LtLoT (A) a.! /'r L ~etcre eu. -. d'oiaet Co ltuarixir. 7 / a I -u do/ri B~nL t A/Tn + B B'W~Bnr-t-A"' CtrntC'n-FCAirL -- B"l-r- B' Arn'.-+ B"rN+B A rL-b3"tiB' C e6aaLil /&e f aj~2LVE. ZL- YUzte 5/L>6 tJol L 4e tt,ou ei-eL rte.cltti 'A' B B B A-" C C' c" v) A,AB" 'B' A B" B' A ' A" 1' ed 'CAeltaon- ) e6tp'c:Ln —.t P4.C- f't.'coTia?ato,ALL- C ntcc coi i t., jS. c..'Z1 Iyocl-cor - 6 -lco6ez - IeC Jdeul 'Cjem Wc1e JZVa.71tey ' JVCLxL I -. 2 ^ - -p LI.T.I. dt cxun co'ce pon<Jnl d - A ei ctvor_ a-'ClLL~t 6-c- cc^CJ~C4 rL d raprcu l-r ra cflic. Mvcrtt < oot&t-c.+ teCt{U { ca cui ACe. I-, 3LrA IA An c+-. - XTtcwL- t..- AtonJ^.aC- OTL GL rlrCoTI f51o 'C4a l - 1LL'eLeXtixa n. e coe<Ac '<e6 pciaaff3o Q t- ti-n plccn el e7 v /dix, ~1 a-La- Leu-cc, Y C-b 2 a1VZCtylLaC l/tLaO eZtL<2 Ste/-h le> pI i~> cLanec.-. c;'ePn^~b im i c o^^ ^ ^"^ ^^^7^ <^^ z^2/ -U).r (A IL. + B" B) - - (y r 13"ntA' t fB) + t 'nz- + -B r A") +- CmCn + C; C(() (A m, + + B'rlt B') t+(B",l t- An, B) 4t -(B'm + B tn,+A") 4. C "_ CCO. oz.LY guze- ces adcu - plawt7 Coml;c erLa i i- Le; A n t- fB",n + ' I B". + At- B B B'm.- +. rut+A C t +C't —+ C" Ai Amt,+ S"rtB' B"m,+ A'nt,+B ~ B'mL, +-BrL,+ A" Cm,+ C', + C" C5u nordl to axc T1 /ZL- V/aczV- con~-mnj clceo capo, c - poc'

/ 961
Pages

Actions

file_download Download Options Download this page PDF - Pages 354-373 Image - Page 354 Plain Text - Page 354

About this Item

Title
Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.
Author
Painvin, M. (Louis Felix), 1826-1875?
Canvas
Page 354
Publication
Douai,: Imp. A. Robaut,
1869-71.
Subject terms
Geometry, Analytic -- Solid

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn6069.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn6069.0001.001/375

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn6069.0001.001

Cite this Item

Full citation
"Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn6069.0001.001. University of Michigan Library Digital Collections. Accessed May 4, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.