Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.

328 11.. IV'-7C'9'~jTft l ea;retiec ex. (1) ():'('L,,,,,, a)=o, efEni ZLn pjar amrzeh e afclsLa Leet a?.,)onr oroJt- d t. — carcice Lune- aW. votiri. (a +-A a), tzo4 arrornz aU J/ce|(2) (:s;) f(,L ' q,, a A a) =o. u-fz<zc_ A a 4eodcL- ceizcc er, cez I7z nt t uct hr< in a {( ' *,caZce 2 az +rz tpoi ot1 ey cottpe. C pac - _ JIC. Z'CLc 7 zrLerzi POOrze 'E,) - -- tnrTn- chra<2 a-c.ze L.I.L e<7t-a&rt ce> ~. f uL- C, c A,,aw a) -p C3., Vu'. uXa~ f (u., u;, a(a, _ ---- ----- C, 6rL pci^.z nl -; *X / 71iQa- r.ot a S A l |,~-C/i epo-ze J e /n i'CeZ7-7L d aru d et Z ee1 I J m rjaii a- eTi qerSLeil dr l'd d+seu a+Abjtclt I (24' 0l) f^~e/ae) -a'3 = (~~~~~~~)1 V, (, )': c(2O)1 (,,f, d', VI, a + Aa/ tt, -..... oei JolYlthC rL6 cardtro/LreAJ ar a ee aCet ta ey a ZiataorWn 'zeuidc Y iz ded Za. cze6errt ei dc1 c t le77t ea eL I 1si o etu- 1' 1cf-xc_ > C e. 10'cjtul~1e A a el Ab i. e 7Lc L lL rcs cSy- ca lc6 LI J0/>tLtWoTL CdrTZ rL72C/v/C dLetewznirL nLI pt 7 /t ~7 atfL - /e c-ac. J2 e t/ tr /o )n ot | / M te oue- /PkC lae 77u ce/ > Yt/atrti'.er et V-ioet-ie_ l. r m _ne- l c/OeO azaa zeL- jov po lc d o/l&itT cr mru1crreS c xLt Je-tcc - c9uSlSti ^ rz ~ f (q.L Vf 7^y/ a,;)-( fa -4 — +- 2. if"a +. A a -bj,~2 Ab3 Xa:j)+."~ - A A a1 Aa._Joc: k1 la da~?ezva. [TirzfzL- c a V Lp o t - c,.lejz cil'-orU ieGfccrzrar a, lai lunjile rr~Jj~a~orz-3, err~ect.z_ eau &- at k 1' '?c3o f(dL L v,,, S ThJ a + a = o. ~ |SL'rp c>7 cc) L { c *So 7ciltttr n cymjnujn ed OJJLX _ fe/rz^ Mi Lfit.,ll 7r7 I dtJeZi<letr cd /Jtia5 itcLb ondib /eo tSUCCce - *CLtL,pocnilJ ocr /7e. cuzipea pa~r /aL dzzc ce in$t]zemeni Votz~io-/ qeic//c ytzc ioct /L-vattol '<u Jlc, l- ak. o i 'dotzeiato^rz. deC ta coi'1e-,-/ I ianA t Vec * h. zc- L| TL rnti'rtcLi a et bE hen.tlce Sa bc>iqt euctdit4 (IA) o anP <tl lte6LCttOTh rx ttieee AB 1 t7LL LeoI tLrXta cctaro< S-10t ivccz <ccD.>Uwcoex (1) 0o1 a-, e. a&.L. d e. 2? envw ppee Aa> u-a-cFccc E. ^-c-ao6. Gdxvtoc tx, l at;Lo n^- <X- ot. i~v'c4{ca" ti dI ~e -.. C LU — /pjet re anl.ci o-M.- le/r-c. dic ceOOi ttrt coCorrmc( I/ c/oppef- a r Ize lap- i c' c ayn taz lcal/. clo-.-cente pa- c te 11 iWe- o^~tl f r(yrc. detz e edA lurce -,i- t./lc J c - ^^riri6 iuf aa-. /L, l ^i /acc^ /oovc ce- c/ec, yi I 'e tal 7Z-/e yr d/e/'^ ie t I tne -^pl / d jja frtt roet ceeec /4. A ( e_ ) Z. cLA_< L^ [3 f I.C^e]:i,72_ -/O/-pe-o ~CZ-dC2 O If~~~~~~~~~~~~~~n 7 (1! + w2- -" (i) a2$ 2, 0 - x_ — /0 catoore C e-t /4 /ruueeiti- dea /de TtCfiale. / arzCL Oz L. -L 'cete la. ec-iorl. rneecierinr. x(,etz oti ort- pejtc 'eLecyVi c. (p~c. o eZ / 6a.j i /, ao- _o.da- e a. — axe- dc1,3 1

/ 961
Pages

Actions

file_download Download Options Download this page PDF - Pages 314-333 Image - Page 314 Plain Text - Page 314

About this Item

Title
Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.
Author
Painvin, M. (Louis Felix), 1826-1875?
Canvas
Page 314
Publication
Douai,: Imp. A. Robaut,
1869-71.
Subject terms
Geometry, Analytic -- Solid

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn6069.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn6069.0001.001/335

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn6069.0001.001

Cite this Item

Full citation
"Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn6069.0001.001. University of Michigan Library Digital Collections. Accessed May 4, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.