Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.

2S6.. )..il.. - a. to, qi ttl7n (t,-y,2) =1. *'<c - VohI.de atC{pW dIiCtruc). Id /Lrztl 0 U f/ ITL j t - ~o *:o L Ltrrtur&t co ei, otz, z Ilta.nit /a /o.-z-tcip/edccc 7pi ^ z/l/-^ffi^ fIe-)eLrld n, l docpt ^ Lrt-'b,. piro,.:t.O J114diem,14CWa d I a0 i fei'i- p' (I) JI2,/O/hJOL/& d a 30iorL r, deaxpj pearie zreeZ/'o /tLt p/aWrL- Iei/conlijue-,pa1 iL pf4 7'pfrtit 0o cowcpe- Jur cace ZLldaTait Cine CoLLfcc cyr- foin-i d/3oui e!L 0);? /tiz 7 edrnz ionl Ze s L e'cofectz6zi^ dzIL p/z ru ecazt aAzeC e (ft/?J Cerie n 1ea/ pld 9zt co1iz4tAJi.T 6 Ci 9c1-n (xf- -y1z)i =z0 Xon xy-<o / f I' i/_'_/L tzi/e 9.. { Oan epdea?. et 6 f(r2) =o -x sy=o^), coz.pen,..a.peen.._,- ~J. ttZa7Tb zcne co0tLc'I dfZLt~ LUL- /Jointr t/ipl-/ eL 0; 4ed tLen acc poLfn0t t'LUpt- Poil/0 IeS tntt.o L-' p^1.)aL e.nL L e_. cWe- ie 5 ('r,) i o- *.=o. 3' /LA haiL qZ Nit jrf/I>fa- i /JadjarLbt paI / tCirdecilL-L deeu a. Lf? (-yt, t) (zcZ ire /esZ), o tc. /-1 a-z/67ce- Pt?>ajnt i[ne crvc Are? ayjadjfl uzi pazoirL;C de AeotzcrkerLenZ eL 0; &.azy'enr/ C/ 'e6otidier neZl eflz/;7l'irdieroL; drc_ 0ct eJj., jUZ(c'IcfWit-" I/Cd IcLIX /d4Lf16L. (II). z/,oi t.e <7e.6 < c ~eo a '.'- e 7. ' c. —m.., d_,a', _'C~,j i t. />/ /;.L4 puajzze ozzjale n ycz cet CP z ix, _y, ) cot p en e /'f L.c J —,Z u Z- )e c/ afnaL al 3J Z3^ p/,tn uztetAconzye, p aajsaiZt pae~ 1z-n caecflaw<( 2eJi/e) /ded Jeitey zmnzwiairet ( (x,-y-f) =,o^ cliiti / L 5/fciace zz/LLTn tnle- couar/K a/ThnLc ernL( 0 7t7 /poinrdiea& zeicauJeJmerrzei; /~ ln e&rlt Ce ceacozzCO Je^TnIcWt,>4a.- 7w -. c77e1a td T er. d4e_ /2_ y /a._L._ C~re0nptc P. Z'-ext -yP. =1. 3,n C. d^: <cl^?tts~tI<l~n - lo JC,'Y; y) = )- repcri~ert Aietlucorqrt- co ncidJrnt. ~17 otn21 0 eel rLU ~t3nlt w ck. 'ccccc. tv.Y cTrn'c-nLet p atu, cz,9 J rut-a7 i acu.ruiaora/f1i /pac- ltuiteiUv L ni. lete; \ Lrt poiTtc ' d uGfe LLI - -pi Lc-t cn e X / ZI- p/reCd/ ce,p2am-, >pazuc p/itn- /dc Pyn /e e-1Zo0rL- (X l Jstci deracc ic / pe7nre'z siC / fzCrTL (1 s) Cc (,' T -) +.' + 3 CfWxI ey, a))+t =eo. 7 'b7.- p/iin qiZe/Conz/ e, ppJa ar t- t /oinZt 0,O coupe. X.5w aceoi owiuaidi zzie io uZAf cLateit z7L'opctril LC. (et o 7 0', E mt,; 1l4 5 7feareT te. (ce3 iitOJeZn-ey- C C6 'Iecne'Ceecu m.t edt 7 /-u/recei a ec-,nL p/fa/LaL dee.ilZl 2' /.$ p//anL ZLaeaniL (a lL. pi/par- C eLrio semerri-) coupe, l. uze uCnt tn- c ii b / italt u klp7tnlAip/ae er 0U. 3C/rcrrtj.sL ZCZ^yc — x. &C L. 3. c 4Otir6 nrozt e. rorzJiec.c tortc e c loLntc a.iduO{ c.tJlon, des /5r5zin 7 l.t1 Meia on. oi't comnmed-ntloz 1f 1 CJ - x A l/u lx i2 - ' - ialt Lb e I u.^1^ L^yt I t't cc..K7i-J.,^1 r-,z < n,,ycu,i lc cZl/l.- ez./,u' ' /'-u ji'C,,; c, /) o:)c/ 'liW c^ C f point ifJ-onlue Cc fct daL/c Jeuvi ito ct''e-"</,4:. zeq7.. on,. J/~ C/l/ia le. o

/ 961
Pages

Actions

file_download Download Options Download this page PDF - Pages 254-273 Image - Page 254 Plain Text - Page 254

About this Item

Title
Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.
Author
Painvin, M. (Louis Felix), 1826-1875?
Canvas
Page 254
Publication
Douai,: Imp. A. Robaut,
1869-71.
Subject terms
Geometry, Analytic -- Solid

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn6069.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn6069.0001.001/273

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn6069.0001.001

Cite this Item

Full citation
"Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn6069.0001.001. University of Michigan Library Digital Collections. Accessed May 4, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.