Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.

f S= lVya L-t- Az + t by+2 CI- n L, JI Sd = ^+ y^ Z2+ 2$ +] 2 y + 2, _ x-t cl,= o; dc. e pOnZ Ui; t, y,, 4~ c. a GO.rrice-CC 1n, MT e LMT,,c /o,-rucziv di? /. uac.coZ.,o n ne ee;c cr ztnce, de< ~yczR- ^^ on. Jl,, Is8 3S: ci-! ic J, PO - J T dfr ICila L zaLdp3 L J poi) t-iM:.(7?) 2 S, o - o S- o; ce 1.. eo pr"cC erTL....I / calmi.t.L. ps-& cica. 4c2i 'ropdW/ t ceU di cew/eJ c/i Jci h- d i.p/?-&oniu az opez z utdea 'cs z ai > wu ci7 oi nl zc A piC jen aZe a-r tur- enem tri crnpvzr- tiCc- iaC- I iCD- i-e-tZ5 ICfL4 lzq am rrw noiav6C- Lrlr"cYc aZLt Jat'rixxL Ac',> 'tCo pft.Cg.i'- 0 e, 1G' ci. ' l2A-, 181o V1IIT cJriecet ec1^?z det pdueo- d e qave accf oeet^ c9i. eLgofii Sl, 5 2, r3le 4c mAcr cLm epzuztabruAc de - cimfo arteJi JpreARce e 0o, 0O 0,o3 O n,02uo ru-i poiewzornj t2ttlotiow let caoefLcer dc c<l.crev 'ceiZtb t Lunit'Z) Cfi7/uic07ZiJCcL O le t pr riciec J f -I^ 5pec^ oi, c/t0 on- pOztt7 /tuzr-//w -cala f:5-^ S;i 0 e.... O 0 - ---- s 5- S.;.. o et 0 ^ ---- - ~ - - 0 S,-1 s = u>ne- ce ces eia- un-c- corneezicmc aei cjt L"eXc- aateh(. (4Zint: (8) SS 5 1S; ceCXi dcoUik, q nUo n-Louvu, r eoi trecow6 Cm tx caix-i <^e 3' ' opf, ectI p-cpcnueiLc4c-& aUJP~rLe > '5 cm1,Je J 29G; 296c cO t r-e -- Ae p&coir dt Ott- eCOLn pr-rico In z Ccll c- te0il V",;Li cA I^a } pztzei Acot4 a c Aois,?econt: pOIz'C (S.l 52 ) 3): 1= SZ = 3; prU'- (SC, S, S ): ' z= S3- 5; pzow^- (2 J, 5a-, S) S = S = o1 j 9 cci yuat-ce. dcoZei paijcnlt eS Lmrran4l-rLt p/cr / porai: (9) S = S = S2,= 3. $nZ) qr ae; <tL*x'ci cu roL.C C diL ttzl.xce Cp4ec pabc rLt p'c- i-ut m-rn prn-coirt- j S i erI f - re1 c'-m ccLn-t- <c c aai 3 pxc'L ez -o - nele V-^ t I X. cp gr e p0l3 MjT pc s 1JCc poin.0). 4.( pz2 2)el ( e,,y, Y3 0') ~ X c'+ (.I y-le Y' -A- ) l tzhairc poin) Icl r,,c:. ^a a/xc c'tant- ppo>s 'ccl' a nUc tLtccf f / ee l - /k iPA-C J di- e /ja 'forr Xi7,'L (28,718); (1) ^%y + Z — 2Qaxc-Qby-Qcz +a =o. exp'L77ict yuezC CC/. ce ippIeU'e- /pa1 pavc S 5JuaYLTCe ptnli^ 1W, 7 ML, M^ ', arzi a

/ 961
Pages

Actions

file_download Download Options Download this page PDF - Pages 174-193 Image - Page 174 Plain Text - Page 174

About this Item

Title
Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.
Author
Painvin, M. (Louis Felix), 1826-1875?
Canvas
Page 174
Publication
Douai,: Imp. A. Robaut,
1869-71.
Subject terms
Geometry, Analytic -- Solid

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn6069.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn6069.0001.001/190

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn6069.0001.001

Cite this Item

Full citation
"Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn6069.0001.001. University of Michigan Library Digital Collections. Accessed May 4, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.