Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.

l-A dievom c -j i -ni ll iCenclrc W, cCl R aec-.deo clnrzue Corfzmaz c, pa-ce- e-n AV ef 71?r icn e iLde Rnez onetbtilne p.ci- ie pLrn Irt' cbiri |i| eri.cr, d' d e memee jlne- poltI c- plan fivCCez^i ecrAi'teCr - cYf, t^2?o.: l S C^lt~ienz azr-vi ZI/^ pce-mie.'ife^ afieLu'c^ v LzLr v.Ut TSZ a - *SZ;an-t; geJ aul/)ceo r 4ztwUw'. Z n ^r- de Lcri tUL 1Cntbjl-iet ^ u?'^ fScnC -S'ftc1ta.', lie Ju cAzl {>'CC4 16'Cl te-t'C dc<di 'dcc -^iltpp.ernrcytialce; 1N w R w R 1/~~~ \ ~ ~~~~~~v V die"cC(AC) V=o, =o 3B —+ C —= o; +, = -!11, (A- V- P i v Ar v didca.(CD) W= A r=, A B —; = a —0 w TJ " W digJc c(B) V- o, R=o, A C — _: = v — o, K=o, A- 1 -— Bc = ~, IT -R -l die-ccBC) = o, AA-o, A X, Y --- AA Xcp Vi 1,A |:e<..? r-. alit qI-Zz dte'Im~tl-ej" /e/.odorl-nee- lie'.e.Ltej-l' d.< co nzX<_-mo-Lleeno l~eLa qzeA: dcpJ r^ ietMcczltvc d'Lrv. viedttz dLvxe fexsctc. oppo>ere prxxttci- p'cporctLcn-rLc/tcCs-t,^xcruc-dsD ic?e) _rPa CI P l C Aneconi IeJ plnaJt 7biectetf^ Ve'CZ\VlC l c i>afjt azz' tlc AC; etc_. c." a ntJezLd t, orion_ pac.. n o-la'h5L2 (.I) ua 16 p/ n- ' V -W -P 'T1.,' ' 1b a cozvn z4 JZLiajzl la cdroite: U _a B-+ C -jt D — =- Zao 'V VV -P_ Pab, PCt act:;e -outpenl Juvarlt lr- co~i[e ' VJ o, - B-+ <C -- +D -- o. C..,. -O *. aC |D r~ cn.o'a.Ti ~ en c'cc ~mmeTSic taz ~t' fe-.,_ —: f ~ ge 1 p~An.,> 4If~c~tuc3ivc (I01) ^7mot-t 8*o(tipvc- Ji 6 purnll- CwneotLr rL'b <2a,-IrrrLe~rLpoL<:t. cin. ^e^ ^, 'pUrtt D tCuc ltS Lt:U*t sG COt tC Tr-.r eT pi; (1' co — Lpn) ~ j pCf 1 tloC4 yCt">_t^ ttztt3'ra<rit eCci<Zc Le diel^C~tL- <^01rcc CIO co nor i i'~l. ccpc t <co< I p~an..> C~S~Ti~Wit>C~tzlLC irl~tic de~e c~LArce CtLyj 07'CtTnr Z ~i~ie~C oppot~)e o - c L el mmepii..A-~mpo") - ' pcI1V eiwu~ UtlG'c;Xlt'c3 jL de~u dir^l'cn^, oppr6- c<7,oJOrrrLC c<^ pL r tcct<-te x^ C GCe;ay' SWctt KX- aitio.c- a Jutc t'Lc<2 COec-^ p r- t trL rT p ( 3dncut^C -) - <^<uC g avoi lenc- L i~abtleat - J*>V~ qZ- f pe'zD lc < e.'tfi'C- dC tut<i le< 6'LJMo'plt~ on- 7-zte, n vC-rcU^. {1 cnoize-:,.

/ 961
Pages

Actions

file_download Download Options Download this page PDF - Pages 134-153 Image - Page 134 Plain Text - Page 134

About this Item

Title
Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.
Author
Painvin, M. (Louis Felix), 1826-1875?
Canvas
Page 134
Publication
Douai,: Imp. A. Robaut,
1869-71.
Subject terms
Geometry, Analytic -- Solid

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn6069.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn6069.0001.001/156

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn6069.0001.001

Cite this Item

Full citation
"Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn6069.0001.001. University of Michigan Library Digital Collections. Accessed May 4, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.