Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie, von Wilhelm Blaschke.

54 Anfangsgrüinde der Flächentheorie. ~ bedeutet die ~Poldistanz" vom "Nordpol" W (0, 0, 1) und p die "geographische Länge". =_ konst. sind die "Parallele", p = konst. die,Meridiane". Die Pole sind singuläre Stellen unsrer Parameter<" < 9 darstellung, da K: agp für - = 0, n verschwindet, also die Bedingung / ----- - \ (3) nicht mehr erfüllt ist. Diese Bedingung scheidet also nicht nur singuläre Stellen der Fläche aus, wie S:/ I'- i E A etwa die Spitze eines Drehkegels, sondern auch Singularitäten der Parameterdarstellung. Für das Bogenl | / element unsrer Kugel erhält man Qh g (11) ds d = d +(sindcp)2, für den Normalenvektor Fig. 12. (12) ~=~. ~ 33. Die zweite Grundform. Wenn man die längs einer Flächenkurve gültige Identität 53 0 ds unter Berücksichtigung der ersten Formel Freneis (~ 6) nach s ableitet, so folgt __~ _ d. d d (13) ~(13ö) -o-~ dds ds' wenn ~e den Einheitsvektor auf der Hauptnormalen unsrer Flächenkurve und d ihren Krümmungshalbmesser bedeutet. Den Ausdruck (14) - dW. d= - ("Ldu + Xvdv) (L du + v/i V) = Ldu' + 2 M diu dv + N dv2 führt man nun als zweite Grundform der Flächentheorie ein. Setzen wir kurz Edu2 + 2Fdudv + Gdv" = I,(15) Ldu- +2Mdudv +- Ndv2 II, so schreibt sich die Gleichung (13) (16) 2 e I,o I Aus (14) ergeben sich durch Koeffizientenvergleichung die Werte der L, M, N (17) L- -,N - (,,v 2 1f _ - t^ e. i. ' x A. p A

/ 248
Pages

Actions

file_download Download Options Download this page PDF - Pages 45-64 Image - Page 54 Plain Text - Page 54

About this Item

Title
Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie, von Wilhelm Blaschke.
Author
Blaschke, Wilhelm, 1885-
Canvas
Page 54
Publication
Berlin,: J. Springer,
1921-29.
Subject terms
Geometry, Differential

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn4015.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn4015.0001.001/70

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn4015.0001.001

Cite this Item

Full citation
"Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie, von Wilhelm Blaschke." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn4015.0001.001. University of Michigan Library Digital Collections. Accessed June 22, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.