The axioms of descriptive geometry, by A.N. Whitehead.
Annotations Tools
52 LATENCY OF POINTS ON AXIS [CH. VI 49. The transformation of ~ 46 (1) on the latent axis of x (i.e. y=O, z= ) is given by dx 2 d = a11ax - a X2. If an $ 0, the solution is X Xo eallt. all -a1 all-a1Xo If al = 0, the solution is 1 1 o at. x XQ But (cf. ~ 48) when t 27r/v, we find X=-X for every value of X0. Hence a1 = 0, a, = 0. Thus every point on any line is latent for a rotation round it with one point of it latent. This fundamental theorem will be cited by the shortened statement, that 'every point on an axis of rotation is latent.'; Thus equations (1) of ~ 46 for the infinitesimal rotation round the axis of x, reduce to dt = a12 + a1 - X (a2y + a3Z) dy= ay + a2z-y (a2y+ az)...............(), dt dt = a2y + a33z- z (a2y + a3z) where a22 + a3 0 and a22a33- a3a32 > O ) 50. The condition that lx+my+nz=O, (1*0)....................(1), should be a latent plane for the rotation (1) of ~ 49 is that dx d dy dz I + m nz + n t = 0........................ (2), dt dt dt whenever (1) is satisfied. Hence substituting for dx dy dz dt' dt' dt' and using (1), we find al2 + a22m + a,2n = (3) al31 + a2m + a33n =...............
-
Scan #1
Page #1
-
Scan #2
Page #2 - Title Page
-
Scan #3
Page #3 - Title Page
-
Scan #4
Page #4
-
Scan #5
Page #5 - Title Page
-
Scan #6
Page #6
-
Scan #7
Page V
-
Scan #8
Page VI - Table of Contents
-
Scan #9
Page VII - Table of Contents
-
Scan #10
Page VIII - Table of Contents
-
Scan #11
Page 1
-
Scan #12
Page 2
-
Scan #13
Page 3
-
Scan #14
Page 4
-
Scan #15
Page 5
-
Scan #16
Page 6
-
Scan #17
Page 7
-
Scan #18
Page 8
-
Scan #19
Page 9
-
Scan #20
Page 10
-
Scan #21
Page 11
-
Scan #22
Page 12
-
Scan #23
Page 13
-
Scan #24
Page 14
-
Scan #25
Page 15
-
Scan #26
Page 16
-
Scan #27
Page 17
-
Scan #28
Page 18
-
Scan #29
Page 19
-
Scan #30
Page 20
-
Scan #31
Page 21
-
Scan #32
Page 22
-
Scan #33
Page 23
-
Scan #34
Page 24
-
Scan #35
Page 25
-
Scan #36
Page 26
-
Scan #37
Page 27
-
Scan #38
Page 28
-
Scan #39
Page 29
-
Scan #40
Page 30
-
Scan #41
Page 31
-
Scan #42
Page 32
-
Scan #43
Page 33
-
Scan #44
Page 34
-
Scan #45
Page 35
-
Scan #46
Page 36
-
Scan #47
Page 37
-
Scan #48
Page 38
-
Scan #49
Page 39
-
Scan #50
Page 40
-
Scan #51
Page 41
-
Scan #52
Page 42
-
Scan #53
Page 43
-
Scan #54
Page 44
-
Scan #55
Page 45
-
Scan #56
Page 46
-
Scan #57
Page 47
-
Scan #58
Page 48
-
Scan #59
Page 49
-
Scan #60
Page 50
-
Scan #61
Page 51
-
Scan #62
Page 52
-
Scan #63
Page 53
-
Scan #64
Page 54
-
Scan #65
Page 55
-
Scan #66
Page 56
-
Scan #67
Page 57
-
Scan #68
Page 58
-
Scan #69
Page 59
-
Scan #70
Page 60
-
Scan #71
Page 61
-
Scan #72
Page 62
-
Scan #73
Page 63
-
Scan #74
Page 64
-
Scan #75
Page 65
-
Scan #76
Page 66
-
Scan #77
Page 67
-
Scan #78
Page 68
-
Scan #79
Page 69
-
Scan #80
Page 70
-
Scan #81
Page 71
-
Scan #82
Page 72
-
Scan #83
Page 73
-
Scan #84
Page 74
-
Scan #85
Page #85
-
Scan #86
Page #86
-
Scan #87
Page #87
Actions
About this Item
- Title
- The axioms of descriptive geometry, by A.N. Whitehead.
- Author
- Whitehead, Alfred North, 1861-1947.
- Canvas
- Page 52
- Publication
- Cambridge,: University press,
- 1907.
- Subject terms
- Geometry, Descriptive
Technical Details
- Link to this Item
-
https://name.umdl.umich.edu/abn2643.0001.001
- Link to this scan
-
https://quod.lib.umich.edu/u/umhistmath/abn2643.0001.001/62
Rights and Permissions
The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].
DPLA Rights Statement: No Copyright - United States
Related Links
IIIF
- Manifest
-
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn2643.0001.001
Cite this Item
- Full citation
-
"The axioms of descriptive geometry, by A.N. Whitehead." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn2643.0001.001. University of Michigan Library Digital Collections. Accessed June 21, 2025.