The axioms of descriptive geometry, by A.N. Whitehead.
Annotations Tools
29, 30] THE DEDEKIND PROPERTY 33 proper projective points corresponds step by step with the geometry of the original descriptive space. Thus the geometry of descriptive space can always be investigated by considering it as a convex region in a projective space. This simply amounts to considering the associated proper projective points and adding thereto the improper projective points. A particular case arises when the Euclidean axiom (cf. ~ 10, above) is assumed. The improper projective points then lie on a single improper projective plane. Thus in Euclidean Geometry when the 'plane at infinity' is considered, the associated projective geometry has been introduced, and this plane is the single improper projective plane. w. 3
-
Scan #1
Page #1
-
Scan #2
Page #2 - Title Page
-
Scan #3
Page #3 - Title Page
-
Scan #4
Page #4
-
Scan #5
Page #5 - Title Page
-
Scan #6
Page #6
-
Scan #7
Page V
-
Scan #8
Page VI - Table of Contents
-
Scan #9
Page VII - Table of Contents
-
Scan #10
Page VIII - Table of Contents
-
Scan #11
Page 1
-
Scan #12
Page 2
-
Scan #13
Page 3
-
Scan #14
Page 4
-
Scan #15
Page 5
-
Scan #16
Page 6
-
Scan #17
Page 7
-
Scan #18
Page 8
-
Scan #19
Page 9
-
Scan #20
Page 10
-
Scan #21
Page 11
-
Scan #22
Page 12
-
Scan #23
Page 13
-
Scan #24
Page 14
-
Scan #25
Page 15
-
Scan #26
Page 16
-
Scan #27
Page 17
-
Scan #28
Page 18
-
Scan #29
Page 19
-
Scan #30
Page 20
-
Scan #31
Page 21
-
Scan #32
Page 22
-
Scan #33
Page 23
-
Scan #34
Page 24
-
Scan #35
Page 25
-
Scan #36
Page 26
-
Scan #37
Page 27
-
Scan #38
Page 28
-
Scan #39
Page 29
-
Scan #40
Page 30
-
Scan #41
Page 31
-
Scan #42
Page 32
-
Scan #43
Page 33
-
Scan #44
Page 34
-
Scan #45
Page 35
-
Scan #46
Page 36
-
Scan #47
Page 37
-
Scan #48
Page 38
-
Scan #49
Page 39
-
Scan #50
Page 40
-
Scan #51
Page 41
-
Scan #52
Page 42
-
Scan #53
Page 43
-
Scan #54
Page 44
-
Scan #55
Page 45
-
Scan #56
Page 46
-
Scan #57
Page 47
-
Scan #58
Page 48
-
Scan #59
Page 49
-
Scan #60
Page 50
-
Scan #61
Page 51
-
Scan #62
Page 52
-
Scan #63
Page 53
-
Scan #64
Page 54
-
Scan #65
Page 55
-
Scan #66
Page 56
-
Scan #67
Page 57
-
Scan #68
Page 58
-
Scan #69
Page 59
-
Scan #70
Page 60
-
Scan #71
Page 61
-
Scan #72
Page 62
-
Scan #73
Page 63
-
Scan #74
Page 64
-
Scan #75
Page 65
-
Scan #76
Page 66
-
Scan #77
Page 67
-
Scan #78
Page 68
-
Scan #79
Page 69
-
Scan #80
Page 70
-
Scan #81
Page 71
-
Scan #82
Page 72
-
Scan #83
Page 73
-
Scan #84
Page 74
-
Scan #85
Page #85
-
Scan #86
Page #86
-
Scan #87
Page #87
Actions
About this Item
- Title
- The axioms of descriptive geometry, by A.N. Whitehead.
- Author
- Whitehead, Alfred North, 1861-1947.
- Canvas
- Page 33
- Publication
- Cambridge,: University press,
- 1907.
- Subject terms
- Geometry, Descriptive
Technical Details
- Link to this Item
-
https://name.umdl.umich.edu/abn2643.0001.001
- Link to this scan
-
https://quod.lib.umich.edu/u/umhistmath/abn2643.0001.001/43
Rights and Permissions
The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].
DPLA Rights Statement: No Copyright - United States
Related Links
IIIF
- Manifest
-
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn2643.0001.001
Cite this Item
- Full citation
-
"The axioms of descriptive geometry, by A.N. Whitehead." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn2643.0001.001. University of Michigan Library Digital Collections. Accessed June 18, 2025.