Principia mathematica, by Alfred North Whitehead ... and Bertrand Russell.

90 CARDINAL ARITHMETIC [PART III c and X, T is a double correlator of X and K; that (*111-132) if 5, T are double correlators of K with X and of X with p respectively, S | T is a double correlator of K with,u. Hence it follows (*111'45'451'452) that double similarity is reflexive, symmetrical, and transitive. We then proceed (*111'2 —34) to consider Crp(S)")X, where it is to be supposed that S is a correlator of S"X and X, and that S'/ is similar to 8/ if 8 e. We prove *111-32. F: X, SX e Cls2 excl. S e I 1. Re e'Crp (S)"X. M = s'D'R. ). M e 1 - 1. ('M= s'X. S"X = MI/"X. S ' X = Me X Thus in the case supposed, M is a double correlator of S"X and X. Thus *111'322. F: K, X e Cls2 excl. S e K/ sm X. R e eaCrp (S)"X. M = s'D'R. D. Me K sm sm X. S= We then proceed (*1114 —47) to various propositions on "sm sm," and finally (*111'5'51'53) state three propositions which assume the multiplicative axiom, namely *111'5. If K, X e Cls2 excl, then K sm sm X.. [! Ki smi X A Rl'sm. *111'51. In the same case, 3! K smi X n Rl'sm. D. sK sm s'X, i.e. if K and X are similar classes of mutually exclusive similar classes, their sums are similar. *111*53. In the same case, if K, X e Cls2 excl, c sm sm X. Hence the multiplicative axiom implies that two mutually exclusive classes of,/ classes each of which has v terms, have the same number of terms in their sum. *111-01. K smsmX=(( -1) (I's'X n T(K= Te"X) Df *11102. Crp (S)'3 = (S'1) -sm 1 Df *111-03. sm sm = K X (a! K sm sm \) Df 111'1. F: Te,smsmX.. 1 1. aTl'T= s'X. = T [(*111'01)] 1111.: T re sm sm X.. Te (s'cK) sm (s'X). Te X e K sm X Dem. F. *3725. Fact. ) F: 'T = s'X. K = Te"X. D. D'T= T"s'. K = Te"X. [*40-38]. D'T= s'T"'X. K = T"X. [(*37-04)] ). D'T= s' K (1) F. *72-451. *60-57. *35-65.: Te l -*. (I'T=s'\.. T Xe 1 1 X = '(T r X) (2). *37-401. ) F: KI= Te"X. =. K = D'(Te X) (3) F.(1). (2). (3). *4'71.:) T e 1 -- 1. ('T= s't. K = Te"X.. Te -- 1. D'T=sKc. ('T=s'X. Te, Xel —l.D'(Te )=K.tI'(Te rX)=X (4) F.(4). *1111..73-03. D. Prop

/ 816
Pages

Actions

file_download Download Options Download this page PDF - Pages 81-100 Image - Page 90 Plain Text - Page 90

About this Item

Title
Principia mathematica, by Alfred North Whitehead ... and Bertrand Russell.
Author
Whitehead, Alfred North, 1861-1947.
Canvas
Page 90
Publication
Cambridge,: University Press,
1910-
Subject terms
Mathematics
Mathematics -- Philosophy
Logic, Symbolic and mathematical

Technical Details

Link to this Item
https://name.umdl.umich.edu/aat3201.0002.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/aat3201.0002.001/130

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:aat3201.0002.001

Cite this Item

Full citation
"Principia mathematica, by Alfred North Whitehead ... and Bertrand Russell." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/aat3201.0002.001. University of Michigan Library Digital Collections. Accessed June 24, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.