Principia mathematica, by Alfred North Whitehead ... and Bertrand Russell.

62 INTRODUCTION LCHAP. the above assumption could be substituted for the axiom of reducibility in symbolic deductions, since its use would require the explicit introduction of the further assumption that by a finite number of downward steps we can pass from any function to a predicative function, and this assumption could not well be made without developments that are scarcely possible at an early stage. But on the above grounds it seems plain that in fact, if the above alternative axiom is true, so is the axiom of reducibility. The converse, which completes the proof of equivalence, is of course evident. VII. Reasons for Accepting the Axiom of Reducibility. That the axiom of reducibility is self-evident is a proposition which can hardly be maintained. But in fact self-evidence is never more than a part of the reason for accepting an axiom, and is never indispensable. The reason for accepting an axiom, as for accepting any other proposition, is always largely inductive, namely that many propositions which are nearly indubitable can be deduced from it, and that no equally plausible way is known by which these propositions could be true if the axiom were false, and nothing which is probably false can be deduced from it. If the axiom is apparently self-evident, that only means, practically, that it is nearly indubitable; for things have been thought to be self-evident and have yet turned out to be false. And if the axiom itself is nearly indubitable, that merely adds to the inductive evidence derived from the fact that its consequences are nearly indubitable: it does not provide new evidence of a radically different kind. Infallibility is never attainable, and therefore some element of doubt should always attach to every axiom and to all its consequences. In formal logic, the element of doubt is less than in most sciences, but it is not absent, as appears from the fact that the paradoxes followed from premisses which were not previously known to require limitations. In the case of the axiom of reducibility, the inductive evidence in its favour is very strong, since the reasonings which it permits and the results to which it leads are all such as appear valid. But although it seems very improbable that the axiom should turn out to be false, it is by no means improbable that it should be found to be deducible frolm some other more fundamental and more evident axiom. It is possible that the use of the vicious-circle principle, as embodied in the above hierarchy of types, is more drastic than it need be, and that by a less drastic use the necessity for the axiom might be avoided. Such changes, however, would not render anything false which had been asserted on the basis of the principles explained above: they would merely provide easier proofs of the same theorems. There would seem, therefore, to be but the slenderest ground for fearing that the use of the axiom of reducibility may lead us into error. j.

/ 696
Pages

Actions

file_download Download Options Download this page PDF - Pages 59-78 Image - Page 62 Plain Text - Page 62

About this Item

Title
Principia mathematica, by Alfred North Whitehead ... and Bertrand Russell.
Author
Whitehead, Alfred North, 1861-1947.
Canvas
Page 62
Publication
Cambridge,: University Press,
1910-
Subject terms
Mathematics
Mathematics -- Philosophy
Logic, Symbolic and mathematical

Technical Details

Link to this Item
https://name.umdl.umich.edu/aat3201.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/aat3201.0001.001/84

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:aat3201.0001.001

Cite this Item

Full citation
"Principia mathematica, by Alfred North Whitehead ... and Bertrand Russell." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/aat3201.0001.001. University of Michigan Library Digital Collections. Accessed June 15, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.