The theory of constructive types (principles of logic and mathematics). By Leon Chwistek.
Annotations Tools
t is easy to see that ouri notation will inipiy iontrradictions. Let us take the function /'(t>I: a) of the variable (>! x, and let us write: Now by.9'1.,if for omt:r e a th ere is a proposition I'a then there is a function fx 5l" we have thle flowing/ fJunction o' x: On the other hand, isven an funeti() /1'P I 0.) Of; ' )of x!l,.- the expression: ~j!{(,/(,'p!"^:4il' denotes a proposition,. hus thi sa me expression den otes a furetion of,x: and does not denote it. The same contradiction ca-n 1be eonstruleted for miatrices, if we agree that 1 l! a t i, e. the function oi one variable function l)! x of' individuals, is a iatrix (Cf. Principi-a, Vol I. p. 17(), No'w, we cau, tasake /-\(f' e ) foi tl a (Cf. Prince ipa Vol I, p. ) f Therefore j! r f1!<(l (t! a) 1s a Inatrîx, To avoid t-lis alMbigu ity I shall write xzjl )t for lts x and ayi [(rI){x } y or y t,} tor <, }, B. If we have no otiert varia.blee als matrices, we cannot use the axiom of reducibcility as a general hypothesis. like Zermelo's axiom, because we cannot write wi.th meaning' (<P) 5([.) e; MX:~ x -tP x. If we assume functions of any type as v ariables, then iwe must have means of speakin' of,all fttnctions of the same type as a given funeltion t1) x'-". A.s ta.mtter of fa-ct it will hbe seen below that w n e can ostiut f x esi (<)), alx: ' ire (<P), mn means,for fail fuet ions of the s aae type as cP t: Such propositions as tbhos, given above, can be used as hypo, theses, like ZerTnelo' axioi, therefore if e assume functions of any type as variables, there is no serionts reason to have the axio of redieiblit;yr among our primitive propositions, even if we are willing to pass over all the other objections t have stated above. Tt is to be reniarked that there are hardiy1 any propositions of n.mathenicatis to be fouani, whiih require a Axiiom of redaciL., Ch-isteF,.
-
Scan #1
Page #1
-
Scan #2
Page #2 - Title Page
-
Scan #3
Page #3
-
Scan #4
Page #4 - Title Page
-
Scan #5
Page #5
-
Scan #6
Page 9
-
Scan #7
Page 10
-
Scan #8
Page 11
-
Scan #9
Page 12
-
Scan #10
Page 13
-
Scan #11
Page 14
-
Scan #12
Page 15
-
Scan #13
Page 16
-
Scan #14
Page 17
-
Scan #15
Page 18
-
Scan #16
Page 19
-
Scan #17
Page 20
-
Scan #18
Page 21
-
Scan #19
Page 22
-
Scan #20
Page 23
-
Scan #21
Page 24
-
Scan #22
Page 25
-
Scan #23
Page 26
-
Scan #24
Page 27
-
Scan #25
Page 28
-
Scan #26
Page 29
-
Scan #27
Page 30
-
Scan #28
Page 31
-
Scan #29
Page 32
-
Scan #30
Page 33
-
Scan #31
Page 34
-
Scan #32
Page 35
-
Scan #33
Page 36
-
Scan #34
Page 37
-
Scan #35
Page 38
-
Scan #36
Page 39
-
Scan #37
Page 40
-
Scan #38
Page 41
-
Scan #39
Page 42
-
Scan #40
Page 43
-
Scan #41
Page 44
-
Scan #42
Page 45
-
Scan #43
Page 46
-
Scan #44
Page 47
-
Scan #45
Page 48
-
Scan #46
Page 49
-
Scan #47
Page 50
-
Scan #48
Page 51
-
Scan #49
Page 52
-
Scan #50
Page 53
-
Scan #51
Page 54
-
Scan #52
Page 55
-
Scan #53
Page 56
-
Scan #54
Page 57
-
Scan #55
Page 58
-
Scan #56
Page 59
-
Scan #57
Page 60
-
Scan #58
Page 61
-
Scan #59
Page 62
-
Scan #60
Page 63
-
Scan #61
Page 64
-
Scan #62
Page 65
-
Scan #63
Page 66
-
Scan #64
Page 67
-
Scan #65
Page 68
-
Scan #66
Page 69
-
Scan #67
Page 70
-
Scan #68
Page 71
-
Scan #69
Page 72
-
Scan #70
Page 73
-
Scan #71
Page 74
-
Scan #72
Page 75
-
Scan #73
Page 76
-
Scan #74
Page 77
-
Scan #75
Page 78
-
Scan #76
Page 79
-
Scan #77
Page 80
-
Scan #78
Page 81
-
Scan #79
Page 82
-
Scan #80
Page 83
-
Scan #81
Page 84
-
Scan #82
Page 85
-
Scan #83
Page 86
-
Scan #84
Page 87
-
Scan #85
Page 88
-
Scan #86
Page 89
-
Scan #87
Page 90
-
Scan #88
Page 91
-
Scan #89
Page 92
-
Scan #90
Page 93
-
Scan #91
Page 94
-
Scan #92
Page 95
-
Scan #93
Page 96
-
Scan #94
Page 97
-
Scan #95
Page 98
Actions
About this Item
- Title
- The theory of constructive types (principles of logic and mathematics). By Leon Chwistek.
- Author
- Chwistek, Leon, 1884-1944.
- Canvas
- Page viewer.nopagenum
- Publication
- Cracow,: University press,
- 1925.
- Subject terms
- Mathematics -- Philosophy
- Logic, Symbolic and mathematical
Technical Details
- Link to this Item
-
https://name.umdl.umich.edu/aas7985.0001.001
- Link to this scan
-
https://quod.lib.umich.edu/u/umhistmath/aas7985.0001.001/14
Rights and Permissions
The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].
DPLA Rights Statement: No Copyright - United States
Related Links
IIIF
- Manifest
-
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:aas7985.0001.001
Cite this Item
- Full citation
-
"The theory of constructive types (principles of logic and mathematics). By Leon Chwistek." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/aas7985.0001.001. University of Michigan Library Digital Collections. Accessed May 14, 2025.