An introduction to projective geometry and its applications; an analytic and synthetic treatment, by Arnold Emch ...

264 INDEX. PAGE Joachimsthal.............................................. 26, I72 K em pe......................................................... 242 K em pe's reversor................................................ 257 Kirkmann's theorem............................................. I37 Koenigs................................. 242 Koenigs' perspectivograph........................................ 258 K 6tter.......................................................... 79 Lagrange....................................................... L am.......................................................... 22 L am bert....................................................... 45 L aurent........................................................ 2 L eudesdorf..................................................... 80 Levy.................................... 229 L ie......................................................., 57, 68 Linear deformation.............................................. 236 Linear transformation........................................ 6, 244 of a curve of the second order................. 94 M aclaurin's theorem.............................................. 35 M cC orm ack..................................................... M echanical drawing............................................ 140 M enachm us.................................................... 92 Metric properties of the involution of stresses....................... 229 M inchin....................................................... 222 M oebius.................................................. 3, 6, 7, 53 Moebius......3, 6, 7, 53 M onge....................................................... 45, I49 Newson....................................................... 34, 68 N ewton.................................................... 196 N ewton's theorem............................................... 35 Oblique axial symmetry.......................................... 56 Optical problem............................................ 67 Orthogonal axial symmetry...................................... 56 Orthographic projection.......................................... 73 Osculating circle of a conic.................................... 59 Pantograph; Inversor, Sylvester's............................. 248, 249 Scheiner's.......................................... 250 P appus.................................................... 6, IIc

/ 281
Pages

Actions

file_download Download Options Download this page PDF - Pages 250- Image - Page #261 Plain Text - Page #261

About this Item

Title
An introduction to projective geometry and its applications; an analytic and synthetic treatment, by Arnold Emch ...
Author
Emch, Arnold, b. 1871.
Canvas
Page 250
Publication
New York,: J. Wiley & sons; [etc., etc.]
1905.
Subject terms
Geometry, Projective
Geometry, Analytic -- Plane

Technical Details

Link to this Item
https://name.umdl.umich.edu/aas4074.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/aas4074.0001.001/275

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:aas4074.0001.001

Cite this Item

Full citation
"An introduction to projective geometry and its applications; an analytic and synthetic treatment, by Arnold Emch ..." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/aas4074.0001.001. University of Michigan Library Digital Collections. Accessed May 4, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.