An elementary treatise on cubic and quartic curves, by A. B. Basset.
Annotations Tools
90 SPECIAL CUBICS. ones; also the inverse points of the foci of the conic, whose inverse the curve is, are two of the single foci; and the node is a third focus. On the other hand, cuspidal cubics are of the third class, but in consequence of the cusp replacing the node, the curve has the same number of double and single foci. It will be shown in Chapter VIII. that when a circular cubic has a double point, the latter is a double or a triple focus composed of the union of two or three single foci, as the case may be, according as the double point is a node or a cusp; but for the special class of circular cubics considered in the present Chapter a direct proof may be given as follows. Transform the cubic x (x2 + y2) = ax2 + by2 into trilinear coordinates by taking an imaginary triangle of reference, one of whose sides is the line at infinity, whilst the other two sides are the lines joining the double point with the circular points. Then we may write /3=x+ty, ry=x-ty, I=1, and the cubic becomes 23y (/3 + y) = {a (/3 + )2 - b (3 - y)2 I, and therefore the tangents at the circular points (ry, ), (I, I) are 2y=I(a-b), 2/3=I(a-b), or in Cartesian coordinates 2 (x - y)= a - b, 2 ( + y)= a - b, which intersect at the point 2x = a - b, y = 0, which determines the double focus. To obtain the real single foci, we observe that symmetry shows that they must lie on the axis of x; we must therefore find the condition that the line x - a + y = 0 should touch the cubic, where (a, 0) are the coordinates of any focus. The points of intersection of this line with the cubic are determined by the equation x2 (a - b - 2a) + a (2b + ag- ba2 = 0, and the line will be a tangent if a2 (a2- 4ba + 4ab) = 0. In the case of a nodal cubic, the factor a2 = 0 determines two of the single foci, which shows that the node is a double focus formed by the union of two single foci; whilst the other factor
-
Scan #1
Page #1
-
Scan #2
Page #2
-
Scan #3
Page #3
-
Scan #4
Page #4
-
Scan #5
Page #5 - Title Page
-
Scan #6
Page #6
-
Scan #7
Page #7 - Title Page
-
Scan #8
Page #8
-
Scan #9
Page V
-
Scan #10
Page VI
-
Scan #11
Page VII
-
Scan #12
Page VIII
-
Scan #13
Page IX - Table of Contents
-
Scan #14
Page X - Table of Contents
-
Scan #15
Page XI - Table of Contents
-
Scan #16
Page XII - Table of Contents
-
Scan #17
Page XIII - Table of Contents
-
Scan #18
Page XIV - Table of Contents
-
Scan #19
Page XV - Table of Contents
-
Scan #20
Page XVI - Table of Contents
-
Scan #21
Page 1
-
Scan #22
Page 2
-
Scan #23
Page 3
-
Scan #24
Page 4
-
Scan #25
Page 5
-
Scan #26
Page 6
-
Scan #27
Page 7
-
Scan #28
Page 8
-
Scan #29
Page 9
-
Scan #30
Page 10
-
Scan #31
Page 11
-
Scan #32
Page 12
-
Scan #33
Page 13
-
Scan #34
Page 14
-
Scan #35
Page 15
-
Scan #36
Page 16
-
Scan #37
Page 17
-
Scan #38
Page 18
-
Scan #39
Page 19
-
Scan #40
Page 20
-
Scan #41
Page 21
-
Scan #42
Page 22
-
Scan #43
Page 23
-
Scan #44
Page 24
-
Scan #45
Page 25
-
Scan #46
Page 26
-
Scan #47
Page 27
-
Scan #48
Page 28
-
Scan #49
Page 29
-
Scan #50
Page 30
-
Scan #51
Page 31
-
Scan #52
Page 32
-
Scan #53
Page 33
-
Scan #54
Page 34
-
Scan #55
Page 35
-
Scan #56
Page 36
-
Scan #57
Page 37
-
Scan #58
Page 38
-
Scan #59
Page 39
-
Scan #60
Page 40
-
Scan #61
Page 41
-
Scan #62
Page 42
-
Scan #63
Page 43
-
Scan #64
Page 44
-
Scan #65
Page 45
-
Scan #66
Page 46
-
Scan #67
Page 47
-
Scan #68
Page 48
-
Scan #69
Page 49
-
Scan #70
Page 50
-
Scan #71
Page 51
-
Scan #72
Page 52
-
Scan #73
Page 53
-
Scan #74
Page 54
-
Scan #75
Page 55
-
Scan #76
Page 56
-
Scan #77
Page 57
-
Scan #78
Page 58
-
Scan #79
Page 59
-
Scan #80
Page 60
-
Scan #81
Page 61
-
Scan #82
Page 62
-
Scan #83
Page 63
-
Scan #84
Page 64
-
Scan #85
Page 65
-
Scan #86
Page 66
-
Scan #87
Page 67
-
Scan #88
Page 68
-
Scan #89
Page 69
-
Scan #90
Page 70
-
Scan #91
Page 71
-
Scan #92
Page 72
-
Scan #93
Page 73
-
Scan #94
Page 74
-
Scan #95
Page 75
-
Scan #96
Page 76
-
Scan #97
Page 77
-
Scan #98
Page 78
-
Scan #99
Page 79
-
Scan #100
Page 80
-
Scan #101
Page 81
-
Scan #102
Page 82
-
Scan #103
Page 83
-
Scan #104
Page 84
-
Scan #105
Page 85
-
Scan #106
Page 86
-
Scan #107
Page 87
-
Scan #108
Page 88
-
Scan #109
Page 89
-
Scan #110
Page 90
-
Scan #111
Page 91
-
Scan #112
Page 92
-
Scan #113
Page 93
-
Scan #114
Page 94
-
Scan #115
Page 95
-
Scan #116
Page 96
-
Scan #117
Page 97
-
Scan #118
Page 98
-
Scan #119
Page 99
-
Scan #120
Page 100
-
Scan #121
Page 101
-
Scan #122
Page 102
-
Scan #123
Page 103
-
Scan #124
Page 104
-
Scan #125
Page 105
-
Scan #126
Page 106
-
Scan #127
Page 107
-
Scan #128
Page 108
-
Scan #129
Page 109
-
Scan #130
Page 110
-
Scan #131
Page 111
-
Scan #132
Page 112
-
Scan #133
Page 113
-
Scan #134
Page 114
-
Scan #135
Page 115
-
Scan #136
Page 116
-
Scan #137
Page 117
-
Scan #138
Page 118
-
Scan #139
Page 119
-
Scan #140
Page 120
-
Scan #141
Page 121
-
Scan #142
Page 122
-
Scan #143
Page 123
-
Scan #144
Page 124
-
Scan #145
Page 125
-
Scan #146
Page 126
-
Scan #147
Page 127
-
Scan #148
Page 128
-
Scan #149
Page 129
-
Scan #150
Page 130
-
Scan #151
Page 131
-
Scan #152
Page 132
-
Scan #153
Page 133
-
Scan #154
Page 134
-
Scan #155
Page 135
-
Scan #156
Page 136
-
Scan #157
Page 137
-
Scan #158
Page 138
-
Scan #159
Page 139
-
Scan #160
Page 140
-
Scan #161
Page 141
-
Scan #162
Page 142
-
Scan #163
Page 143
-
Scan #164
Page 144
-
Scan #165
Page 145
-
Scan #166
Page 146
-
Scan #167
Page 147
-
Scan #168
Page 148
-
Scan #169
Page 149
-
Scan #170
Page 150
-
Scan #171
Page 151
-
Scan #172
Page 152
-
Scan #173
Page 153
-
Scan #174
Page 154
-
Scan #175
Page 155
-
Scan #176
Page 156
-
Scan #177
Page 157
-
Scan #178
Page 158
-
Scan #179
Page 159
-
Scan #180
Page 160
-
Scan #181
Page 161
-
Scan #182
Page 162
-
Scan #183
Page 163
-
Scan #184
Page 164
-
Scan #185
Page 165
-
Scan #186
Page 166
-
Scan #187
Page 167
-
Scan #188
Page 168
-
Scan #189
Page 169
-
Scan #190
Page 170
-
Scan #191
Page 171
-
Scan #192
Page 172
-
Scan #193
Page 173
-
Scan #194
Page 174
-
Scan #195
Page 175
-
Scan #196
Page 176
-
Scan #197
Page 177
-
Scan #198
Page 178
-
Scan #199
Page 179
-
Scan #200
Page 180
-
Scan #201
Page 181
-
Scan #202
Page 182
-
Scan #203
Page 183
-
Scan #204
Page 184
-
Scan #205
Page 185
-
Scan #206
Page 186
-
Scan #207
Page 187
-
Scan #208
Page 188
-
Scan #209
Page 189
-
Scan #210
Page 190
-
Scan #211
Page 191
-
Scan #212
Page 192
-
Scan #213
Page 193
-
Scan #214
Page 194
-
Scan #215
Page 195
-
Scan #216
Page 196
-
Scan #217
Page 197
-
Scan #218
Page 198
-
Scan #219
Page 199
-
Scan #220
Page 200
-
Scan #221
Page 201
-
Scan #222
Page 202
-
Scan #223
Page 203
-
Scan #224
Page 204
-
Scan #225
Page 205
-
Scan #226
Page 206
-
Scan #227
Page 207
-
Scan #228
Page 208
-
Scan #229
Page 209
-
Scan #230
Page 210
-
Scan #231
Page 211
-
Scan #232
Page 212
-
Scan #233
Page 213
-
Scan #234
Page 214
-
Scan #235
Page 215
-
Scan #236
Page 216
-
Scan #237
Page 217
-
Scan #238
Page 218
-
Scan #239
Page 219
-
Scan #240
Page 220
-
Scan #241
Page 221
-
Scan #242
Page 222
-
Scan #243
Page 223
-
Scan #244
Page 224
-
Scan #245
Page 225
-
Scan #246
Page 226
-
Scan #247
Page 227
-
Scan #248
Page 228
-
Scan #249
Page 229
-
Scan #250
Page 230
-
Scan #251
Page 231
-
Scan #252
Page 232
-
Scan #253
Page 233
-
Scan #254
Page 234
-
Scan #255
Page 235
-
Scan #256
Page 236
-
Scan #257
Page 237
-
Scan #258
Page 238
-
Scan #259
Page 239
-
Scan #260
Page 240
-
Scan #261
Page 241
-
Scan #262
Page 242
-
Scan #263
Page 243
-
Scan #264
Page 244
-
Scan #265
Page 245
-
Scan #266
Page 246
-
Scan #267
Page 247
-
Scan #268
Page 248
-
Scan #269
Page 249
-
Scan #270
Page 250
-
Scan #271
Page 251
-
Scan #272
Page 252
-
Scan #273
Page 253
-
Scan #274
Page 254
-
Scan #275
Page 255
-
Scan #276
Page #276
-
Scan #277
Page #277
-
Scan #278
Page #278
Actions
About this Item
- Title
- An elementary treatise on cubic and quartic curves, by A. B. Basset.
- Author
- Basset, Alfred Barnard, 1854-1930.
- Canvas
- Page 81
- Publication
- Cambridge,: Deighton, Bell,
- 1901.
- Subject terms
- Curves, Cubic.
- Curves, Quartic.
Technical Details
- Link to this Item
-
https://name.umdl.umich.edu/ath7468.0001.001
- Link to this scan
-
https://quod.lib.umich.edu/u/umhistmath/ath7468.0001.001/110
Rights and Permissions
The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].
DPLA Rights Statement: No Copyright - United States
Related Links
IIIF
- Manifest
-
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:ath7468.0001.001
Cite this Item
- Full citation
-
"An elementary treatise on cubic and quartic curves, by A. B. Basset." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/ath7468.0001.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.