Projective geometry, by Oswald Veblen and John Wesley Young.
Annotations Tools
~~ 18, 19] QUADRANGULAR SETS 47 configulration is mutual; that is, if either is given, the other is determined. For a reason which will be evident later, either is called a covariant of the other. 2. Show that the configuration consisting of two perspective tetrahedra, their center and plane of perspectivity, and the projectors and traces may be regarded in six ways as consisting of a complete 5-point P12, P13, 71, P15, P16 and a complete 5-plane 7r456, T2456 7236g, T034, T2345, the notation being analogous to that used on page 41 for the Desargues configuration. Show that the vertices of the 5-plane are on the faces of the 5-point. 3. If P1, Po, P3, P4, Pa, are vertices of a complete space 5-point, the ten points D,, in which an edge pij meets a face PkPIPr (i, j, k, 1, mn all distinct), are called (iacgonalpoints. The tetrahedra PoPaP4Pr and D Dl3-D14DD5 are perspective with P1 as center. Their plane of perspectivity, r1, is called the polar of P1 with regard to the four vertices. In like manner, the points P2, P8, P4, P, determine their polar planes rr2, r3, tr4, 7r. Prove that the 5-point and the polar 5-plane form the configuration of two perspective tetrahedra; that the plane section of the 5-point by any of the five planes is a quadrangle-quadrilateral configuration; and that the dual of the above construction applied to the 5-plane determines the original 5-point. 4. If P is the pole of wr with regard to the tetrahedron A 1A2A3AA4, then is r the polar of P with regard to the same tetrahedron? 19. The fundamental theorem on quadrangular sets. THEOREM 3. If two complete quadrangles PPP4IP4 and PI'P'PIP4' correspond - P to P', P2 to P', etc. - in such a way that five of the pairs of homologous sides intersect in points of a line 1, then the sixth pair of homologous sides will intersect in, a point of 1. (A, E) This theorem holds whether the quadrangles are in the same or in different planes. Proof. Suppose, first, that none of the vertices or sides of one of 'the quadrangles coincide with any vertex or side of the other. Let P P, PP, PP, AP, PP4J be the five sides which, by hypothesis, meet their homologous sides PJP', P'P', P,'P' P2'P, P'PI in points of I (fig. 19). We must show that At and P'P' meet in a point of 1. The triangles PP2P3 and 'P'PI' are, by hypothesis, perspective from 1; as also the triangles i',P4 and P'P'P'. Each pair is therefore (Theorem 1') perspective from a point, and this point is in each case the intersection O of the lines PPt' and Pd'. Hence the triangles P2P and P2''P' are perspective from O and their pairs of homologous sides intersect in the points of a line, which is evidently 1, since it contains two points of 1. But PPt and ' P ' are
-
Scan #1
Page #1
-
Scan #2
Page I - Title Page
-
Scan #3
Page II
-
Scan #4
Page III
-
Scan #5
Page IV
-
Scan #6
Page V
-
Scan #7
Page VI
-
Scan #8
Page VII - Table of Contents
-
Scan #9
Page VIII - Table of Contents
-
Scan #10
Page IX - Table of Contents
-
Scan #11
Page X - Table of Contents
-
Scan #12
Page 1
-
Scan #13
Page 2
-
Scan #14
Page 3
-
Scan #15
Page 4
-
Scan #16
Page 5
-
Scan #17
Page 6
-
Scan #18
Page 7
-
Scan #19
Page 8
-
Scan #20
Page 9
-
Scan #21
Page 10
-
Scan #22
Page 11
-
Scan #23
Page 12
-
Scan #24
Page 13
-
Scan #25
Page 14
-
Scan #26
Page 15
-
Scan #27
Page 16
-
Scan #28
Page 17
-
Scan #29
Page 18
-
Scan #30
Page 19
-
Scan #31
Page 20
-
Scan #32
Page 21
-
Scan #33
Page 22
-
Scan #34
Page 23
-
Scan #35
Page 24
-
Scan #36
Page 25
-
Scan #37
Page 26
-
Scan #38
Page 27
-
Scan #39
Page 28
-
Scan #40
Page 29
-
Scan #41
Page 30
-
Scan #42
Page 31
-
Scan #43
Page 32
-
Scan #44
Page 33
-
Scan #45
Page 34
-
Scan #46
Page 35
-
Scan #47
Page 36
-
Scan #48
Page 37
-
Scan #49
Page 38
-
Scan #50
Page 39
-
Scan #51
Page 40
-
Scan #52
Page 41
-
Scan #53
Page 42
-
Scan #54
Page 43
-
Scan #55
Page 44
-
Scan #56
Page 45
-
Scan #57
Page 46
-
Scan #58
Page 47
-
Scan #59
Page 48
-
Scan #60
Page 49
-
Scan #61
Page 50
-
Scan #62
Page 51
-
Scan #63
Page 52
-
Scan #64
Page 53
-
Scan #65
Page 54
-
Scan #66
Page 55
-
Scan #67
Page 56
-
Scan #68
Page 57
-
Scan #69
Page 58
-
Scan #70
Page 59
-
Scan #71
Page 60
-
Scan #72
Page 61
-
Scan #73
Page 62
-
Scan #74
Page 63
-
Scan #75
Page 64
-
Scan #76
Page 65
-
Scan #77
Page 66
-
Scan #78
Page 67
-
Scan #79
Page 68
-
Scan #80
Page 69
-
Scan #81
Page 70
-
Scan #82
Page 71
-
Scan #83
Page 72
-
Scan #84
Page 73
-
Scan #85
Page 74
-
Scan #86
Page 75
-
Scan #87
Page 76
-
Scan #88
Page 77
-
Scan #89
Page 78
-
Scan #90
Page 79
-
Scan #91
Page 80
-
Scan #92
Page 81
-
Scan #93
Page 82
-
Scan #94
Page 83
-
Scan #95
Page 84
-
Scan #96
Page 85
-
Scan #97
Page 86
-
Scan #98
Page 87
-
Scan #99
Page 88
-
Scan #100
Page 89
-
Scan #101
Page 90
-
Scan #102
Page 91
-
Scan #103
Page 92
-
Scan #104
Page 93
-
Scan #105
Page 94
-
Scan #106
Page 95
-
Scan #107
Page 96
-
Scan #108
Page 97
-
Scan #109
Page 98
-
Scan #110
Page 99
-
Scan #111
Page 100
-
Scan #112
Page 101
-
Scan #113
Page 102
-
Scan #114
Page 103
-
Scan #115
Page 104
-
Scan #116
Page 105
-
Scan #117
Page 106
-
Scan #118
Page 107
-
Scan #119
Page 108
-
Scan #120
Page 109
-
Scan #121
Page 110
-
Scan #122
Page 111
-
Scan #123
Page 112
-
Scan #124
Page 113
-
Scan #125
Page 114
-
Scan #126
Page 115
-
Scan #127
Page 116
-
Scan #128
Page 117
-
Scan #129
Page 118
-
Scan #130
Page 119
-
Scan #131
Page 120
-
Scan #132
Page 121
-
Scan #133
Page 122
-
Scan #134
Page 123
-
Scan #135
Page 124
-
Scan #136
Page 125
-
Scan #137
Page 126
-
Scan #138
Page 127
-
Scan #139
Page 128
-
Scan #140
Page 129
-
Scan #141
Page 130
-
Scan #142
Page 131
-
Scan #143
Page 132
-
Scan #144
Page 133
-
Scan #145
Page 134
-
Scan #146
Page 135
-
Scan #147
Page 136
-
Scan #148
Page 137
-
Scan #149
Page 138
-
Scan #150
Page 139
-
Scan #151
Page 140
-
Scan #152
Page 141
-
Scan #153
Page 142
-
Scan #154
Page 143
-
Scan #155
Page 144
-
Scan #156
Page 145
-
Scan #157
Page 146
-
Scan #158
Page 147
-
Scan #159
Page 148
-
Scan #160
Page 149
-
Scan #161
Page 150
-
Scan #162
Page 151
-
Scan #163
Page 152
-
Scan #164
Page 153
-
Scan #165
Page 154
-
Scan #166
Page 155
-
Scan #167
Page 156
-
Scan #168
Page 157
-
Scan #169
Page 158
-
Scan #170
Page 159
-
Scan #171
Page 160
-
Scan #172
Page 161
-
Scan #173
Page 162
-
Scan #174
Page 163
-
Scan #175
Page 164
-
Scan #176
Page 165
-
Scan #177
Page 166
-
Scan #178
Page 167
-
Scan #179
Page 168
-
Scan #180
Page 169
-
Scan #181
Page 170
-
Scan #182
Page 171
-
Scan #183
Page 172
-
Scan #184
Page 173
-
Scan #185
Page 174
-
Scan #186
Page 175
-
Scan #187
Page 176
-
Scan #188
Page 177
-
Scan #189
Page 178
-
Scan #190
Page 179
-
Scan #191
Page 180
-
Scan #192
Page 181
-
Scan #193
Page 182
-
Scan #194
Page 183
-
Scan #195
Page 184
-
Scan #196
Page 185
-
Scan #197
Page 186
-
Scan #198
Page 187
-
Scan #199
Page 188
-
Scan #200
Page 189
-
Scan #201
Page 190
-
Scan #202
Page 191
-
Scan #203
Page 192
-
Scan #204
Page 193
-
Scan #205
Page 194
-
Scan #206
Page 195
-
Scan #207
Page 196
-
Scan #208
Page 197
-
Scan #209
Page 198
-
Scan #210
Page 199
-
Scan #211
Page 200
-
Scan #212
Page 201
-
Scan #213
Page 202
-
Scan #214
Page 203
-
Scan #215
Page 204
-
Scan #216
Page 205
-
Scan #217
Page 206
-
Scan #218
Page 207
-
Scan #219
Page 208
-
Scan #220
Page 209
-
Scan #221
Page 210
-
Scan #222
Page 211
-
Scan #223
Page 212
-
Scan #224
Page 213
-
Scan #225
Page 214
-
Scan #226
Page 215
-
Scan #227
Page 216
-
Scan #228
Page 217
-
Scan #229
Page 218
-
Scan #230
Page 219
-
Scan #231
Page 220
-
Scan #232
Page 221
-
Scan #233
Page 222
-
Scan #234
Page 223
-
Scan #235
Page 224
-
Scan #236
Page 225
-
Scan #237
Page 226
-
Scan #238
Page 227
-
Scan #239
Page 228
-
Scan #240
Page 229
-
Scan #241
Page 230
-
Scan #242
Page 231
-
Scan #243
Page 232
-
Scan #244
Page 233
-
Scan #245
Page 234
-
Scan #246
Page 235
-
Scan #247
Page 236
-
Scan #248
Page 237
-
Scan #249
Page 238
-
Scan #250
Page 239
-
Scan #251
Page 240
-
Scan #252
Page 241
-
Scan #253
Page 242
-
Scan #254
Page 243
-
Scan #255
Page 244
-
Scan #256
Page 245
-
Scan #257
Page 246
-
Scan #258
Page 247
-
Scan #259
Page 248
-
Scan #260
Page 249
-
Scan #261
Page 250
-
Scan #262
Page 251
-
Scan #263
Page 252
-
Scan #264
Page 253
-
Scan #265
Page 254
-
Scan #266
Page 255
-
Scan #267
Page 256
-
Scan #268
Page 257
-
Scan #269
Page 258
-
Scan #270
Page 259
-
Scan #271
Page 260
-
Scan #272
Page 261
-
Scan #273
Page 262
-
Scan #274
Page 263
-
Scan #275
Page 264
-
Scan #276
Page 265
-
Scan #277
Page 266
-
Scan #278
Page 267
-
Scan #279
Page 268
-
Scan #280
Page 269
-
Scan #281
Page 270
-
Scan #282
Page 271
-
Scan #283
Page 272
-
Scan #284
Page 273
-
Scan #285
Page 274
-
Scan #286
Page 275
-
Scan #287
Page 276
-
Scan #288
Page 277
-
Scan #289
Page 278
-
Scan #290
Page 279
-
Scan #291
Page 280
-
Scan #292
Page 281
-
Scan #293
Page 282
-
Scan #294
Page 283
-
Scan #295
Page 284
-
Scan #296
Page 285
-
Scan #297
Page 286
-
Scan #298
Page 287
-
Scan #299
Page 288
-
Scan #300
Page 289
-
Scan #301
Page 290
-
Scan #302
Page 291
-
Scan #303
Page 292
-
Scan #304
Page 293
-
Scan #305
Page 294
-
Scan #306
Page 295
-
Scan #307
Page 296
-
Scan #308
Page 297
-
Scan #309
Page 298
-
Scan #310
Page 299
-
Scan #311
Page 300
-
Scan #312
Page 301
-
Scan #313
Page 302
-
Scan #314
Page 303
-
Scan #315
Page 304
-
Scan #316
Page 305
-
Scan #317
Page 306
-
Scan #318
Page 307
-
Scan #319
Page 308
-
Scan #320
Page 309
-
Scan #321
Page 310
-
Scan #322
Page 311
-
Scan #323
Page 312
-
Scan #324
Page 313
-
Scan #325
Page 314
-
Scan #326
Page 315
-
Scan #327
Page 316
-
Scan #328
Page 317
-
Scan #329
Page 318
-
Scan #330
Page 319
-
Scan #331
Page 320
-
Scan #332
Page 321
-
Scan #333
Page 322
-
Scan #334
Page 323
-
Scan #335
Page 324
-
Scan #336
Page 325
-
Scan #337
Page 326
-
Scan #338
Page 327
-
Scan #339
Page 328
-
Scan #340
Page 329
-
Scan #341
Page 330
-
Scan #342
Page 331
-
Scan #343
Page 332
-
Scan #344
Page 333
-
Scan #345
Page 334
-
Scan #346
Page 335 - Comprehensive Index
-
Scan #347
Page 336 - Comprehensive Index
-
Scan #348
Page 337 - Comprehensive Index
-
Scan #349
Page 338 - Comprehensive Index
-
Scan #350
Page 339 - Comprehensive Index
-
Scan #351
Page 340 - Comprehensive Index
-
Scan #352
Page 341 - Comprehensive Index
-
Scan #353
Page 342 - Comprehensive Index
-
Scan #354
Page 343 - Comprehensive Index
-
Scan #355
Page 344 - Comprehensive Index
Actions
About this Item
- Title
- Projective geometry, by Oswald Veblen and John Wesley Young.
- Author
- Veblen, Oswald, 1880-1960.
- Canvas
- Page 30
- Publication
- Boston,: Ginn and company
- [1910-1918]
- Subject terms
- Geometry, Projective
Technical Details
- Link to this Item
-
https://name.umdl.umich.edu/acv5447.0001.001
- Link to this scan
-
https://quod.lib.umich.edu/u/umhistmath/acv5447.0001.001/58
Rights and Permissions
The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].
DPLA Rights Statement: No Copyright - United States
Related Links
IIIF
- Manifest
-
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acv5447.0001.001
Cite this Item
- Full citation
-
"Projective geometry, by Oswald Veblen and John Wesley Young." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acv5447.0001.001. University of Michigan Library Digital Collections. Accessed June 25, 2025.