Geometrische aufgabensammlung. Ausgabe A: für gymnasien ... von Dr. W. Lietzmann.
Annotations Tools
22 6ebene tzigonometrie 3. %ebne an ber banb ber gig. 9 unter 3eadctung ber 23orgeicen ber auFtretenben Gtreden bae lbbitionetl)eorem (1), (2) auf ben u aVl aus, baf a unb ß atvar \fpi bteiben, baf aber a + ß > 900 ift. 4. (berteitung be 2(bbitionetl)eoremn aun bem ~tolemäiifden 2el)rfia.)1) a) 3m eet)nenbiered ABCD jei AC Zurcdmeffer (= 2r), 03 CAD = ~, < CAB = 3. Zitibiere bie gormet bee 3tolemaifcten 2e4rfabee btrct (2r)2 unb teite To bac tbbitionetteorem ter. b) 7m et)nenbiered ABCD fei AB Suttrmeffer (= 2r), -< DAB = a, 0< GAB = P. Wenbe bie 2ormeT für AB CD an unb berfatre twie oben. c) SBeI4en einfcräntenbene Sebitgngnen unterliegen bei biejem 3et ueit bie USSinteI a unb P? c 5. iig. 10 beigt, ba c = a - cos ß + b. cos a ift. a) Srüite in biefer (leictung c, a unb b burcd ben 9tabiue r bee Umfreifee unb VSinteIfnnftionen aun. b) 3enu#e ~/ B> ~y = 1800 - (a + 3) unb leite jo baa tbbitionetteorem a --- —-5 B t er. e) eltf)en einfcräantenben Sebingungen unterliegen Sgi. 10. bie S3inetl a unb ß3 6. e fjei einer ber V3infeI a unb ß, etra a, ftumpf, ber anbere jpib. üftre ben S3infet a' =a - 900 ein, ftelXe für <o' unb ß bie 2bbitionet4eoreme (1) unb (2) auf unb unterfudce, ob jett aufj für a unb 3 bie 29bbitionet4eoreme nadtweiebaar finb. 7. 3eife ebenfo bie Sid)tigteit ber 5ormetn (3) unb (4) für ben gaul nad), baf einer ber beibeen Wintet ftumpf ift. 8. a) Sie STbbitionetteoreme mögen fiir StneI tt a unb gelten, bie tiirfien irgenbtoetlen beftimmten in 3Sietfaden bee rectten Sinitet angebbaren G5ren3en liegen. S3eife bann nacf, baf bie ~ormeln aucf nocfi fitr / unb einen Stinet c =- 900 + a gelten. b) Beige, baf bamit bie 2bbitionttl)eoreme für beliebige pofitite ainfel a unb ßi geten. e) Seige, ba~ bie Sormetn auct für negatite Sinfel gelten. d) 3eige, baa nacd 8utaffung negatiter Tinfet bie gormein (3) unb (4) nur eonberfäae ber gormein (1) unb (2) finb. e) 2eite bie gormel (2) unmittebtar auh ber gormel (1) fger. f) 2eite bie gormel (4) unmittelbar aut ber Sormet (3) 4er. 9. erprobe bie Ricd)tigeit ber gormetn an ben s3tineln a) 60~ unb 30~, b) 0~ unb 45~, c) 900 unb 900, d) 0~ unb ß. 10. Q3eretne a) sin 750, b) cos 45~, c) sin 15~, d) cos 15~, e) sin 105~, f) cos 165~. 11. (ntitictle gormein für a) sin (45~ + c), b) cos (450 + a), e) sin (450 - a), d) cos (450 - ). 12. entticle gormetn für a) sin (a + /ß + - ), b) cos (c + ß + y ), c) sin (a +- / - y). 1) Sgl. Unterftufe ~ 27, iufg. 22.
-
Scan #1
Page #1
-
Scan #2
Page #2 - Title Page
-
Scan #3
Page #3
-
Scan #4
Page #4
-
Scan #5
Page #5
-
Scan #6
Page #6 - Title Page
-
Scan #7
Page #7
-
Scan #8
Page #8
-
Scan #9
Page V
-
Scan #10
Page VI
-
Scan #11
Page VII - Table of Contents
-
Scan #12
Page VIII - Table of Contents
-
Scan #13
Page 1
-
Scan #14
Page 2
-
Scan #15
Page 3
-
Scan #16
Page 4
-
Scan #17
Page 5
-
Scan #18
Page 6
-
Scan #19
Page 7
-
Scan #20
Page 8
-
Scan #21
Page 9
-
Scan #22
Page 10
-
Scan #23
Page 11
-
Scan #24
Page 12
-
Scan #25
Page 13
-
Scan #26
Page 14
-
Scan #27
Page 15
-
Scan #28
Page 16
-
Scan #29
Page 17
-
Scan #30
Page 18
-
Scan #31
Page 19
-
Scan #32
Page 20
-
Scan #33
Page 21
-
Scan #34
Page 22
-
Scan #35
Page 23
-
Scan #36
Page 24
-
Scan #37
Page 25
-
Scan #38
Page 26
-
Scan #39
Page 27
-
Scan #40
Page 28
-
Scan #41
Page 29
-
Scan #42
Page 30
-
Scan #43
Page 31
-
Scan #44
Page 32
-
Scan #45
Page 33
-
Scan #46
Page 34
-
Scan #47
Page 35
-
Scan #48
Page 36
-
Scan #49
Page 37
-
Scan #50
Page 38
-
Scan #51
Page 39
-
Scan #52
Page 40
-
Scan #53
Page 41
-
Scan #54
Page 42
-
Scan #55
Page 43
-
Scan #56
Page 44
-
Scan #57
Page 45
-
Scan #58
Page 46
-
Scan #59
Page 47
-
Scan #60
Page 48
-
Scan #61
Page 49
-
Scan #62
Page 50
-
Scan #63
Page 51
-
Scan #64
Page 52
-
Scan #65
Page 53
-
Scan #66
Page 54
-
Scan #67
Page 55
-
Scan #68
Page 56
-
Scan #69
Page 57
-
Scan #70
Page 58
-
Scan #71
Page 59
-
Scan #72
Page 60
-
Scan #73
Page 61
-
Scan #74
Page 62
-
Scan #75
Page 63
-
Scan #76
Page 64
-
Scan #77
Page 65
-
Scan #78
Page 66
-
Scan #79
Page 67
-
Scan #80
Page 68
-
Scan #81
Page 69
-
Scan #82
Page 70
-
Scan #83
Page 71
-
Scan #84
Page 72
-
Scan #85
Page 73
-
Scan #86
Page 74
-
Scan #87
Page 75
-
Scan #88
Page 76
-
Scan #89
Page 77
-
Scan #90
Page 78
-
Scan #91
Page 79
-
Scan #92
Page 80
-
Scan #93
Page 81
-
Scan #94
Page 82
-
Scan #95
Page 83
-
Scan #96
Page 84
-
Scan #97
Page 85
-
Scan #98
Page 86
-
Scan #99
Page 87
-
Scan #100
Page 88
-
Scan #101
Page 89
-
Scan #102
Page 90
-
Scan #103
Page 91
-
Scan #104
Page 92
-
Scan #105
Page 93
-
Scan #106
Page 94
-
Scan #107
Page 95
-
Scan #108
Page 96
-
Scan #109
Page 97
-
Scan #110
Page 98
-
Scan #111
Page 99
-
Scan #112
Page 100
-
Scan #113
Page 101
-
Scan #114
Page 102
-
Scan #115
Page 103
-
Scan #116
Page 104
-
Scan #117
Page 105
-
Scan #118
Page 106
-
Scan #119
Page 107
-
Scan #120
Page 108
-
Scan #121
Page 109
-
Scan #122
Page 110
-
Scan #123
Page 111
-
Scan #124
Page 112
-
Scan #125
Page 113
-
Scan #126
Page 114
-
Scan #127
Page 115
-
Scan #128
Page 116
-
Scan #129
Page 117
-
Scan #130
Page 118
-
Scan #131
Page 119
-
Scan #132
Page 120
-
Scan #133
Page 121
-
Scan #134
Page 122
-
Scan #135
Page 123
-
Scan #136
Page 124
-
Scan #137
Page 125
-
Scan #138
Page 126
-
Scan #139
Page 127
-
Scan #140
Page 128
-
Scan #141
Page 129
-
Scan #142
Page 130
-
Scan #143
Page 131
-
Scan #144
Page 132
-
Scan #145
Page 133
-
Scan #146
Page 134
-
Scan #147
Page 135
-
Scan #148
Page 136
-
Scan #149
Page 137
-
Scan #150
Page 138
-
Scan #151
Page 139
-
Scan #152
Page 140
-
Scan #153
Page 141
-
Scan #154
Page 142
-
Scan #155
Page 143
-
Scan #156
Page 144
-
Scan #157
Page 145
-
Scan #158
Page 146
-
Scan #159
Page 147
-
Scan #160
Page 148
-
Scan #161
Page 149
-
Scan #162
Page 150
-
Scan #163
Page 151
-
Scan #164
Page 152
-
Scan #165
Page 153
-
Scan #166
Page 154
-
Scan #167
Page 155
-
Scan #168
Page 156
-
Scan #169
Page 157
-
Scan #170
Page 158
-
Scan #171
Page 159
-
Scan #172
Page 160
-
Scan #173
Page 161
-
Scan #174
Page 162
-
Scan #175
Page 163
-
Scan #176
Page 164
-
Scan #177
Page 165
-
Scan #178
Page 166
-
Scan #179
Page 167
-
Scan #180
Page 168
-
Scan #181
Page 169
-
Scan #182
Page #182
Actions
About this Item
- Title
- Geometrische aufgabensammlung. Ausgabe A: für gymnasien ... von Dr. W. Lietzmann.
- Author
- Lietzmann, Walther, 1880-1959.
- Canvas
- Page 9
- Publication
- Leipzig [etc.]: B. G. Teubner,
- 1916-20.
- Subject terms
- Geometry -- Problems, exercises, etc.
Technical Details
- Link to this Item
-
https://name.umdl.umich.edu/acv4752.0002.001
- Link to this scan
-
https://quod.lib.umich.edu/u/umhistmath/acv4752.0002.001/34
Rights and Permissions
The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].
DPLA Rights Statement: No Copyright - United States
Related Links
IIIF
- Manifest
-
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acv4752.0002.001
Cite this Item
- Full citation
-
"Geometrische aufgabensammlung. Ausgabe A: für gymnasien ... von Dr. W. Lietzmann." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acv4752.0002.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.