Geometrische aufgabensammlung. Ausgabe A: für gymnasien ... von Dr. W. Lietzmann.
Annotations Tools
~ 22. eroetite unb intotlttortiie Eigenflaften 129 -einem betiebigen fünften ü3unfte proüjiieren fann. c) gaffe ben ntiatt uon a) unb b) in bie tueftage ufamment, ba~ )oppeltertä)atniffe burd) Brojiaieren unb 2ccnei, ben nict geanbert Wserben. 5. S3ann nennt man twei 3unftreit)en (etrattenbüicf)el) a) projettit, b) perfyetitü? 6. SGelcte ift bie nottoenbige unb tinreicenbe 3ebiingung bafür, bai avofei projeittie $unftreiten (etrat4enbiifc)eI) perfpettiu liegen?1) 7. e feien lwoei jdieftiefgenbe projettiue etra)tenbiiücet i nßunftrei4en bnrCd brei 3aare entjprectenbetr temente gegeben. geige, tuie man mit arleiniger 3ennunng bee 2ineate p~ jebem bierten Gtrat) bee einen (ittratIenbüiiefe ] 3utnft ber einen $1unftreite ben entfirec)enben etrabt bee anberen Gtra)tLentfitjcet | lunnt ber anberen unft:etrei)e finben fann. - rIaiutere babei ben 3egriff eerfpettiuitäte^entrunt | $eripeftiuitaäteaäie. 8. ee jeien aüei projettibe ßtnttrei4en auf berifelen 5(eraben (~,,rager") bnrdc brei Saare entipredenber 3untfte gegeben. 3ie rann man ii jebem tierten e3unit ber einen itunftreite ben entfpre~enben ber anberen finben? t1nbeutung: 3eige, baf man butx 13roijiieren auO 3wei uericiebenen $unften ber ebene biefe Xufgabe anf bie in Kt. 7 für c(tratlenbüfiele gelöfte iurüdciü)ren fann. 9. 2ifie biefefte %ufgabe Woie sr. 8 für atei!rojettiue ~traftenbüiifce mit bemfetben ~ceitet (,,rager"). 10. sn jebem bon toei fctieftiegenben projetitien traaf)fenbitüfetn ftto ber ~tratf ermittelt tWerben, tuelcter ber eerbinbnngetinie ber fräager entfpric:t. 11. 3eictne in jeber Oon ftei jcfieffiegenben projeftiien ßnunftreiben ben ßunnt, ber bem cfnitttpunft ber träger entfpridct. 12. galt tion 3Wei auf bemifeben Zrager gelegenen projietiten 3unftreiten ein $aar entfprectenber ß3unfte unfammen, jo mitn no ei ein ^teite- Saart entfpre~,cenber nunfte äunammenfaCLen. wetreife bae uub beige, tue man ba e,reite t 3aar finben fann, tuenn bae erfte 3Caar unb toei ntit nufammenfafenbe aaare entftptre cenber 3tnfte gegeben finb. 13. Bon tuei jcfieeftiegenben projettiuen ~3unftreit)en fennt man ein $aar entiprecenber $3unfte unb in ieber SeiUje noct bent 3untt, ber beint niittpunft ber Zrager entfpricpt. 2nbere $3aare entjprecenbe:r 13unfte finb nu 5eic)nen. 14. on bwtei fjctiefliegenben projeftiten ittraltenbüiufien fennt man ein 3aar entipre:eenber 2traWten unb in jebeem 3üiifceI nod bent trata)I, twel)er be:r 3erbinbungnIinie ber;räger entfprictt. anctn seine anbere ~3aare entfprecenber:@tratIen. 15. S3ewreije: a) Sie ßunfte eines Regetflcnittee roerben aun wtoei beliebigen bon itnen bur) projefttiee tracaf)enbiiücete projiiiert. b) roei beliebige tangenten 1) $xoieetie 3unftreieen ober btrat)tenbiiüjeI, bie nictt perfpeitiu liegen, fotten im folgenben al ~",,iiefliegenb" bedeitnet werben, toenn biee ber Zeutlictdeit wuegen nötig ericteint. 2iegbmannn iüfltfe, Geonietr. illtaen iic fütx. nabenIft. B. II. 9
-
Scan #1
Page #1
-
Scan #2
Page #2 - Title Page
-
Scan #3
Page #3
-
Scan #4
Page #4
-
Scan #5
Page #5
-
Scan #6
Page #6 - Title Page
-
Scan #7
Page #7
-
Scan #8
Page #8
-
Scan #9
Page V
-
Scan #10
Page VI
-
Scan #11
Page VII - Table of Contents
-
Scan #12
Page VIII - Table of Contents
-
Scan #13
Page 1
-
Scan #14
Page 2
-
Scan #15
Page 3
-
Scan #16
Page 4
-
Scan #17
Page 5
-
Scan #18
Page 6
-
Scan #19
Page 7
-
Scan #20
Page 8
-
Scan #21
Page 9
-
Scan #22
Page 10
-
Scan #23
Page 11
-
Scan #24
Page 12
-
Scan #25
Page 13
-
Scan #26
Page 14
-
Scan #27
Page 15
-
Scan #28
Page 16
-
Scan #29
Page 17
-
Scan #30
Page 18
-
Scan #31
Page 19
-
Scan #32
Page 20
-
Scan #33
Page 21
-
Scan #34
Page 22
-
Scan #35
Page 23
-
Scan #36
Page 24
-
Scan #37
Page 25
-
Scan #38
Page 26
-
Scan #39
Page 27
-
Scan #40
Page 28
-
Scan #41
Page 29
-
Scan #42
Page 30
-
Scan #43
Page 31
-
Scan #44
Page 32
-
Scan #45
Page 33
-
Scan #46
Page 34
-
Scan #47
Page 35
-
Scan #48
Page 36
-
Scan #49
Page 37
-
Scan #50
Page 38
-
Scan #51
Page 39
-
Scan #52
Page 40
-
Scan #53
Page 41
-
Scan #54
Page 42
-
Scan #55
Page 43
-
Scan #56
Page 44
-
Scan #57
Page 45
-
Scan #58
Page 46
-
Scan #59
Page 47
-
Scan #60
Page 48
-
Scan #61
Page 49
-
Scan #62
Page 50
-
Scan #63
Page 51
-
Scan #64
Page 52
-
Scan #65
Page 53
-
Scan #66
Page 54
-
Scan #67
Page 55
-
Scan #68
Page 56
-
Scan #69
Page 57
-
Scan #70
Page 58
-
Scan #71
Page 59
-
Scan #72
Page 60
-
Scan #73
Page 61
-
Scan #74
Page 62
-
Scan #75
Page 63
-
Scan #76
Page 64
-
Scan #77
Page 65
-
Scan #78
Page 66
-
Scan #79
Page 67
-
Scan #80
Page 68
-
Scan #81
Page 69
-
Scan #82
Page 70
-
Scan #83
Page 71
-
Scan #84
Page 72
-
Scan #85
Page 73
-
Scan #86
Page 74
-
Scan #87
Page 75
-
Scan #88
Page 76
-
Scan #89
Page 77
-
Scan #90
Page 78
-
Scan #91
Page 79
-
Scan #92
Page 80
-
Scan #93
Page 81
-
Scan #94
Page 82
-
Scan #95
Page 83
-
Scan #96
Page 84
-
Scan #97
Page 85
-
Scan #98
Page 86
-
Scan #99
Page 87
-
Scan #100
Page 88
-
Scan #101
Page 89
-
Scan #102
Page 90
-
Scan #103
Page 91
-
Scan #104
Page 92
-
Scan #105
Page 93
-
Scan #106
Page 94
-
Scan #107
Page 95
-
Scan #108
Page 96
-
Scan #109
Page 97
-
Scan #110
Page 98
-
Scan #111
Page 99
-
Scan #112
Page 100
-
Scan #113
Page 101
-
Scan #114
Page 102
-
Scan #115
Page 103
-
Scan #116
Page 104
-
Scan #117
Page 105
-
Scan #118
Page 106
-
Scan #119
Page 107
-
Scan #120
Page 108
-
Scan #121
Page 109
-
Scan #122
Page 110
-
Scan #123
Page 111
-
Scan #124
Page 112
-
Scan #125
Page 113
-
Scan #126
Page 114
-
Scan #127
Page 115
-
Scan #128
Page 116
-
Scan #129
Page 117
-
Scan #130
Page 118
-
Scan #131
Page 119
-
Scan #132
Page 120
-
Scan #133
Page 121
-
Scan #134
Page 122
-
Scan #135
Page 123
-
Scan #136
Page 124
-
Scan #137
Page 125
-
Scan #138
Page 126
-
Scan #139
Page 127
-
Scan #140
Page 128
-
Scan #141
Page 129
-
Scan #142
Page 130
-
Scan #143
Page 131
-
Scan #144
Page 132
-
Scan #145
Page 133
-
Scan #146
Page 134
-
Scan #147
Page 135
-
Scan #148
Page 136
-
Scan #149
Page 137
-
Scan #150
Page 138
-
Scan #151
Page 139
-
Scan #152
Page 140
-
Scan #153
Page 141
-
Scan #154
Page 142
-
Scan #155
Page 143
-
Scan #156
Page 144
-
Scan #157
Page 145
-
Scan #158
Page 146
-
Scan #159
Page 147
-
Scan #160
Page 148
-
Scan #161
Page 149
-
Scan #162
Page 150
-
Scan #163
Page 151
-
Scan #164
Page 152
-
Scan #165
Page 153
-
Scan #166
Page 154
-
Scan #167
Page 155
-
Scan #168
Page 156
-
Scan #169
Page 157
-
Scan #170
Page 158
-
Scan #171
Page 159
-
Scan #172
Page 160
-
Scan #173
Page 161
-
Scan #174
Page 162
-
Scan #175
Page 163
-
Scan #176
Page 164
-
Scan #177
Page 165
-
Scan #178
Page 166
-
Scan #179
Page 167
-
Scan #180
Page 168
-
Scan #181
Page 169
-
Scan #182
Page #182
Actions
About this Item
- Title
- Geometrische aufgabensammlung. Ausgabe A: für gymnasien ... von Dr. W. Lietzmann.
- Author
- Lietzmann, Walther, 1880-1959.
- Canvas
- Page 129
- Publication
- Leipzig [etc.]: B. G. Teubner,
- 1916-20.
- Subject terms
- Geometry -- Problems, exercises, etc.
Technical Details
- Link to this Item
-
https://name.umdl.umich.edu/acv4752.0002.001
- Link to this scan
-
https://quod.lib.umich.edu/u/umhistmath/acv4752.0002.001/141
Rights and Permissions
The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].
DPLA Rights Statement: No Copyright - United States
Related Links
IIIF
- Manifest
-
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acv4752.0002.001
Cite this Item
- Full citation
-
"Geometrische aufgabensammlung. Ausgabe A: für gymnasien ... von Dr. W. Lietzmann." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acv4752.0002.001. University of Michigan Library Digital Collections. Accessed May 1, 2025.