Theory and applications of finite groups, by G.A. Miller, H. F. Blichfeldt [and] L. E. Dickson.

TABLE OF CONTENTS xiii SECTION PAGE 44. Characteristic sub-groups of an Abelian group......................... 109 E xercises........................................................ 112 45. Non-Abelian groups in which every sub-group is Abelian.............. 112 Exercises........................................................ 114 46. Roots of the operators of an Abelian group........................... 114 47. Hamilton groups........................................ 115 Exercises........................................................ 117 CHAPTER V GROUPS WHOSE ORDERS ARE POWERS OF PRIME NUMBERS 48. Introduction................................1........ 118 49. Invariant Abelian sub-groups....................................... 120 Exercises........................................... 122 50. Number of sub-groups in a group of order ptm....................... 123 E xercises........................................................ 127 51. Number of non-cyclic subgroups in a group of order p", p>2.......... 128 52. Number of non-cyclic subgroups in a group of order 2................. 129 Exercises........................................................ 133 53. Some properties of the group of isomorphisms of a group of order pt..... 134 Exercises....................................................... 137 54. Maximum order of a Sylow subgroup in the group of isomorphisms of a group of order pm............................................... 137 55. Construction of all the possible groups of order pm................. 138 E xercises.................................................. 141 CHAPTER VI GROUPS HAVING SIMPLE ABSTRACT DEFINITIONS 56. Groups generated by two operators having a common square........... 143 Exercises................................................. 147 57. Groups of the regular polyhedrons.................................. 147 58. Group of the regular icosahedron............................... 150 Exercises...................................................... 151 59. Generalizations of the group of the regular tetrahedron.............. 152 60. Generalizations of the octahedron group............................. 154 Exercises........................................................ 158 CHAPTER VII ISOMORPHISMS 61. Relative and intrinsic properties of the operators of a group............ 159 62. Group of isomorphisms as a substitution group...................... 160 63. Groups of isomorphisms of non-Abelian groups...................... 162 IE xercises........................................................ 164 64. Doubly transitive substitution groups of isomorphisms.............. 164

/ 413
Pages

Actions

file_download Download Options Download this page PDF - Pages #1-20 Image - Page #1 Plain Text - Page #1

About this Item

Title
Theory and applications of finite groups, by G.A. Miller, H. F. Blichfeldt [and] L. E. Dickson.
Author
Miller, G. A. (George Abram), 1863-1951.
Canvas
Page viewer.nopagenum - Table of Contents
Publication
New York,: John Wiley & sons, inc.; [etc., etc.]
1916.
Subject terms
Group theory.

Technical Details

Link to this Item
https://name.umdl.umich.edu/acm6867.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acm6867.0001.001/16

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acm6867.0001.001

Cite this Item

Full citation
"Theory and applications of finite groups, by G.A. Miller, H. F. Blichfeldt [and] L. E. Dickson." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acm6867.0001.001. University of Michigan Library Digital Collections. Accessed June 19, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.