Colloquium publications.
Annotations Tools
FUNCTIONALS AND THEIR APPLICATIONS. 53 namely, if yi and ~2 are any two functions of L, then a constant M can be found, M < 1, such that the following condition holds: b b b b (2) max IF[(pl(s) x] - F[(p2(s)I x] - M max | Si() -- 2(X) |, a a a a b where max I s(x) denotes the upper bound of a function s(x) a in the range ab. Under these conditions, the class L contains one and only one solution of equation (1). To construct this solution we take 0po, any particular function in L, and write Pn(x) = F[pn-llx], n = 1, 2, 3, *-. Then the function (p(x) = lim <p(x) n=o0 is in L, as is seen at once from the uniform convergence of the series <Po + (01 - <Po) + (<P2- ) + * * *, and is a solution of (1), since b b b max I p - F[(p x] max p - <pn+ + max I F[pn ix] - F[p Ix]. a a a If there were two solutions sp and p' we should have, by equation (2): b b max | so- ps' I M max I o- o'I, a a which is a contradiction, since M < 1. We have the corollary, that if L contains a continuous function, and if F[sp I x] represents a continuous function of x when its argument <p(x) represents a continuous function of x, then the unique solution of (1) is continuous. 36. The Case of a Variable Upper Limit. If the functional F[s I x] depends upon sp only for values between a and x, we are able to make use of a property of prolongation, which, speaking generally, makes less restrictive the convergence condition (ii) imposed on M in Art. 35. In particular, if F consists of terms independent of sp plus a term whose variation is of the form
-
Scan #1
Page #1
-
Scan #2
Page #2
-
Scan #3
Page #3
-
Scan #4
Page #4 - Title Page
-
Scan #5
Page #5
-
Scan #6
Page #6
-
Scan #7
Page #7
-
Scan #8
Page V
-
Scan #9
Page VI
-
Scan #10
Page VII
-
Scan #11
Page VIII
-
Scan #12
Page IX - Table of Contents
-
Scan #13
Page X - Table of Contents
-
Scan #14
Page XI - Table of Contents
-
Scan #15
Page XII - Table of Contents
-
Scan #16
Page 1
-
Scan #17
Page 2
-
Scan #18
Page 3
-
Scan #19
Page #19
-
Scan #20
Page 1
-
Scan #21
Page 2
-
Scan #22
Page 3
-
Scan #23
Page 4
-
Scan #24
Page 5
-
Scan #25
Page 6
-
Scan #26
Page 7
-
Scan #27
Page 8
-
Scan #28
Page 9
-
Scan #29
Page 10
-
Scan #30
Page 11
-
Scan #31
Page 12
-
Scan #32
Page 13
-
Scan #33
Page 14
-
Scan #34
Page 15
-
Scan #35
Page 16
-
Scan #36
Page 17
-
Scan #37
Page 18
-
Scan #38
Page 19
-
Scan #39
Page 20
-
Scan #40
Page 21
-
Scan #41
Page 22
-
Scan #42
Page 23
-
Scan #43
Page 24
-
Scan #44
Page 25
-
Scan #45
Page 26
-
Scan #46
Page 27
-
Scan #47
Page 28
-
Scan #48
Page 29
-
Scan #49
Page 30
-
Scan #50
Page 31
-
Scan #51
Page 32
-
Scan #52
Page 33
-
Scan #53
Page 34
-
Scan #54
Page 35
-
Scan #55
Page 36
-
Scan #56
Page 37
-
Scan #57
Page 38
-
Scan #58
Page 39
-
Scan #59
Page 40
-
Scan #60
Page 41
-
Scan #61
Page 42
-
Scan #62
Page 43
-
Scan #63
Page 44
-
Scan #64
Page 45
-
Scan #65
Page 46
-
Scan #66
Page 47
-
Scan #67
Page 48
-
Scan #68
Page 49
-
Scan #69
Page 50
-
Scan #70
Page 51
-
Scan #71
Page 52
-
Scan #72
Page 53
-
Scan #73
Page 54
-
Scan #74
Page 55
-
Scan #75
Page 56
-
Scan #76
Page 57
-
Scan #77
Page 58
-
Scan #78
Page 59
-
Scan #79
Page 60
-
Scan #80
Page 61
-
Scan #81
Page 62
-
Scan #82
Page 63
-
Scan #83
Page 64
-
Scan #84
Page 65
-
Scan #85
Page 66
-
Scan #86
Page 67
-
Scan #87
Page 68
-
Scan #88
Page 69
-
Scan #89
Page 70
-
Scan #90
Page 71
-
Scan #91
Page 72
-
Scan #92
Page 73
-
Scan #93
Page 74
-
Scan #94
Page 75
-
Scan #95
Page 76
-
Scan #96
Page 77
-
Scan #97
Page 78
-
Scan #98
Page 79
-
Scan #99
Page 80
-
Scan #100
Page 81
-
Scan #101
Page 82
-
Scan #102
Page 83
-
Scan #103
Page 84
-
Scan #104
Page 85
-
Scan #105
Page 86
-
Scan #106
Page 87
-
Scan #107
Page 88
-
Scan #108
Page 89
-
Scan #109
Page 90
-
Scan #110
Page 91
-
Scan #111
Page 92
-
Scan #112
Page 93
-
Scan #113
Page 94
-
Scan #114
Page 95
-
Scan #115
Page 96
-
Scan #116
Page 97
-
Scan #117
Page 98
-
Scan #118
Page 99
-
Scan #119
Page 100
-
Scan #120
Page 101
-
Scan #121
Page 102
-
Scan #122
Page 103
-
Scan #123
Page 104
-
Scan #124
Page 105
-
Scan #125
Page 106
-
Scan #126
Page 107
-
Scan #127
Page 108
-
Scan #128
Page 109
-
Scan #129
Page 110
-
Scan #130
Page 111
-
Scan #131
Page 112
-
Scan #132
Page 113
-
Scan #133
Page 114
-
Scan #134
Page 115
-
Scan #135
Page 116
-
Scan #136
Page 117
-
Scan #137
Page 118
-
Scan #138
Page 119
-
Scan #139
Page 120
-
Scan #140
Page 121
-
Scan #141
Page 122
-
Scan #142
Page 123
-
Scan #143
Page 124
-
Scan #144
Page 125
-
Scan #145
Page 126
-
Scan #146
Page 127
-
Scan #147
Page 128
-
Scan #148
Page 129
-
Scan #149
Page 130
-
Scan #150
Page 131
-
Scan #151
Page 132
-
Scan #152
Page 133
-
Scan #153
Page 134
-
Scan #154
Page 135
-
Scan #155
Page 136
-
Scan #156
Page #156 - Title Page
-
Scan #157
Page #157
-
Scan #158
Page III
-
Scan #159
Page IV
-
Scan #160
Page V - Table of Contents
-
Scan #161
Page VI - Table of Contents
-
Scan #162
Page VII - Table of Contents
-
Scan #163
Page #163
-
Scan #164
Page 1
-
Scan #165
Page 2
-
Scan #166
Page 3
-
Scan #167
Page 4
-
Scan #168
Page 5
-
Scan #169
Page 6
-
Scan #170
Page 7
-
Scan #171
Page 8
-
Scan #172
Page 9
-
Scan #173
Page 10
-
Scan #174
Page 11
-
Scan #175
Page 12
-
Scan #176
Page 13
-
Scan #177
Page 14
-
Scan #178
Page 15
-
Scan #179
Page 16
-
Scan #180
Page 17
-
Scan #181
Page 18
-
Scan #182
Page 19
-
Scan #183
Page 20
-
Scan #184
Page 21
-
Scan #185
Page 22
-
Scan #186
Page 23
-
Scan #187
Page 24
-
Scan #188
Page 25
-
Scan #189
Page 26
-
Scan #190
Page 27
-
Scan #191
Page 28
-
Scan #192
Page 29
-
Scan #193
Page 30
-
Scan #194
Page 31
-
Scan #195
Page 32
-
Scan #196
Page 33
-
Scan #197
Page 34
-
Scan #198
Page 35
-
Scan #199
Page 36
-
Scan #200
Page 37
-
Scan #201
Page 38
-
Scan #202
Page 39
-
Scan #203
Page 40
-
Scan #204
Page 41
-
Scan #205
Page 42
-
Scan #206
Page 43
-
Scan #207
Page 44
-
Scan #208
Page 45
-
Scan #209
Page 46
-
Scan #210
Page 47
-
Scan #211
Page 48
-
Scan #212
Page 49
-
Scan #213
Page 50
-
Scan #214
Page 51
-
Scan #215
Page 52
-
Scan #216
Page 53
-
Scan #217
Page 54
-
Scan #218
Page 55
-
Scan #219
Page 56
-
Scan #220
Page 57
-
Scan #221
Page 58
-
Scan #222
Page 59
-
Scan #223
Page 60
-
Scan #224
Page 61
-
Scan #225
Page 62
-
Scan #226
Page 63
-
Scan #227
Page 64
-
Scan #228
Page 65
-
Scan #229
Page 66
-
Scan #230
Page 67
-
Scan #231
Page 68
-
Scan #232
Page 69
-
Scan #233
Page 70
-
Scan #234
Page 71
-
Scan #235
Page 72
-
Scan #236
Page 73
-
Scan #237
Page 74
-
Scan #238
Page 75
-
Scan #239
Page 76
-
Scan #240
Page 77
-
Scan #241
Page 78
-
Scan #242
Page 79
-
Scan #243
Page 80
-
Scan #244
Page 81
-
Scan #245
Page 82
-
Scan #246
Page 83
-
Scan #247
Page 84
-
Scan #248
Page 85
-
Scan #249
Page 86
-
Scan #250
Page 87
-
Scan #251
Page 88
-
Scan #252
Page 89
-
Scan #253
Page 90
-
Scan #254
Page 91
-
Scan #255
Page 92
-
Scan #256
Page 93
-
Scan #257
Page 94
-
Scan #258
Page 95
-
Scan #259
Page 96
-
Scan #260
Page 97
-
Scan #261
Page 98
-
Scan #262
Page 99
-
Scan #263
Page 100
-
Scan #264
Page 101
-
Scan #265
Page 102
-
Scan #266
Page 103
-
Scan #267
Page 104
-
Scan #268
Page 105
-
Scan #269
Page 106
-
Scan #270
Page 107
-
Scan #271
Page 108
-
Scan #272
Page 109
-
Scan #273
Page 110
-
Scan #274
Page 111
-
Scan #275
Page 112
-
Scan #276
Page 113
-
Scan #277
Page 114
-
Scan #278
Page 115
-
Scan #279
Page 116
-
Scan #280
Page 117
-
Scan #281
Page 118
-
Scan #282
Page 119
-
Scan #283
Page 120
-
Scan #284
Page 121
-
Scan #285
Page 122
-
Scan #286
Page 123
-
Scan #287
Page 124
-
Scan #288
Page 125
-
Scan #289
Page 126
-
Scan #290
Page 127
-
Scan #291
Page 128
-
Scan #292
Page 129
-
Scan #293
Page 130
-
Scan #294
Page 131
-
Scan #295
Page 132
-
Scan #296
Page 133
-
Scan #297
Page 134
-
Scan #298
Page 135
-
Scan #299
Page 136
-
Scan #300
Page 137
-
Scan #301
Page 138
-
Scan #302
Page 139
-
Scan #303
Page 140
-
Scan #304
Page 141
-
Scan #305
Page 142
-
Scan #306
Page 143
-
Scan #307
Page 144
-
Scan #308
Page 145
-
Scan #309
Page 146
-
Scan #310
Page 147
-
Scan #311
Page 148
-
Scan #312
Page 149
-
Scan #313
Page 150
Actions
About this Item
- Title
- Colloquium publications.
- Author
- American Mathematical Society.
- Canvas
- Page 42
- Publication
- New York [etc.]
- 1905-
- Subject terms
- Mathematics.
Technical Details
- Link to this Item
-
https://name.umdl.umich.edu/acd1941.0005.001
- Link to this scan
-
https://quod.lib.umich.edu/u/umhistmath/acd1941.0005.001/72
Rights and Permissions
The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].
DPLA Rights Statement: No Copyright - United States
Related Links
IIIF
- Manifest
-
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acd1941.0005.001
Cite this Item
- Full citation
-
"Colloquium publications." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acd1941.0005.001. University of Michigan Library Digital Collections. Accessed June 14, 2025.