The Pell equation, by Edward Everett Whitford.

CONTENTS. PAGE Origin of the name Pell Equation................. 1 D efinition..................................... 3 Relation to square root approximation............ 4 The most ancient Hindu solutions................ 6 The most ancient Greek solutions................ 9 Theon of Smyrna............................... 13 A rchim edes.................................... 15 Heron of Alexandria............................ 21 D iophantus.................................... 22 The H indus.................................... 26 The Arabs..................................... 39 Europeans before Fermat........................ 41 Fermat, Brouncker and Wallis.................. 46 E u ler......................................... 59 Relation to the general indeterminate equation of the second degree................................ 64 L agrange...................................... 71 Relation to the theory of quadratic forms......... 76 Gauss...................................... 77 Dirichlet...................................... 79 Relation to circle division....................... 88 Relation to elliptic functions..................... 91 Relation to units of a quadratic domain........... 92 Relation to hyperbolic functions.................. 93 Classes of fundamental solutions................. 93 Tables of solutions............................. 95 Table of the fundamental solutions of the equations x2- Ay2 = = 1 from A = 1,501 to A = 1,700... 102 Bibliography................................. 113 Appendix A, table of continued fractions for JIA from A = 1,501 to A = 2,012.................. 162 Index of names............................. 191 iii

/ 199
Pages

Actions

file_download Download Options Download this page PDF - Pages #1-20 Image - Page #1 Plain Text - Page #1

About this Item

Title
The Pell equation, by Edward Everett Whitford.
Author
Whitford, Edward Everett, 1865-
Canvas
Page viewer.nopagenum
Publication
New York,: E. E. Whitford,
1912.
Subject terms
Diophantine analysis

Technical Details

Link to this Item
https://name.umdl.umich.edu/abv2773.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abv2773.0001.001/4

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abv2773.0001.001

Cite this Item

Full citation
"The Pell equation, by Edward Everett Whitford." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abv2773.0001.001. University of Michigan Library Digital Collections. Accessed June 5, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.