The Pell equation, by Edward Everett Whitford.
Annotations Tools
THE PELL EQUATION 149 con una nota sull' equazione di Pell," Periodico di matematica, vol. I (3), p. 57, Leghorn, 1904. In introducing the concept index, meaning the maximum number of factors of an irrational binomial, the author solves by a new method the equation x2 - Dy2 = N in the case where D is an integer or a polynomial of even degree. A. S. WEREBRUSOW, "Solution de x2 - Ay2 = - 1," L'Intermediare des mathematiciens, vol. XI, p. 154, 242. Paris, 1904. G. FRATTINI, "Nota sull' equazione di Pell," Periodico di matematica, vol. XIX, p. 71, Leghorn, 1904. R. W. D. CHRISTIE, A. CUNNINGHAM, "To find an infinity of positive integral values of X which belong to the same Y in the Pellian equation Xn2 - PY = - 1," Mathematical questions from the Educational Times, vol. VII (2), p. 79, London, 1905. Example, 702 - 293 132 = 74 - 1,. R. W. D. CHRISTIE, A. H. BELL, A. CUNNINGHAM, "Solve X2 - 19Y2 = - 3 in integers by the use of other convergents than the ordinary Pellian," Mathematical questions from the Educational Times, vol. VIII (2), p. 28, London, 1905. Use is made of Euler's theorem extended, of the negative development of 1/19, and of the triple series of Bell. A. CUNNINGHAM, "(1) Factorize into prime factors N = (70,600,7342 + 1). Here N = qp2 where p is a large prime, (2) Show how to find very large numbers (> 1050) of the form N = y2 + 1 = qm2 where m is very large (> 1025)," Mathematical questions from the Educational Times, vol. VIII (2), p. 83, London, 1905.
-
Scan #1
Page #1
-
Scan #2
Page #2
-
Scan #3
Page #3
-
Scan #4
Page III - Table of Contents
-
Scan #5
Page IV
-
Scan #6
Page 1
-
Scan #7
Page 2
-
Scan #8
Page 3
-
Scan #9
Page 4
-
Scan #10
Page 5
-
Scan #11
Page 6
-
Scan #12
Page 7
-
Scan #13
Page 8
-
Scan #14
Page 9
-
Scan #15
Page 10
-
Scan #16
Page 11
-
Scan #17
Page 12
-
Scan #18
Page 13
-
Scan #19
Page 14
-
Scan #20
Page 15
-
Scan #21
Page 16
-
Scan #22
Page 17
-
Scan #23
Page 18
-
Scan #24
Page 19
-
Scan #25
Page 20
-
Scan #26
Page 21
-
Scan #27
Page 22
-
Scan #28
Page 23
-
Scan #29
Page 24
-
Scan #30
Page 25
-
Scan #31
Page 26
-
Scan #32
Page 27
-
Scan #33
Page 28
-
Scan #34
Page 29
-
Scan #35
Page 30
-
Scan #36
Page 31
-
Scan #37
Page 32
-
Scan #38
Page 33
-
Scan #39
Page 34
-
Scan #40
Page 35
-
Scan #41
Page 36
-
Scan #42
Page 37
-
Scan #43
Page 38
-
Scan #44
Page 39
-
Scan #45
Page 40
-
Scan #46
Page 41
-
Scan #47
Page 42
-
Scan #48
Page 43
-
Scan #49
Page 44
-
Scan #50
Page 45
-
Scan #51
Page 46
-
Scan #52
Page 47
-
Scan #53
Page 48
-
Scan #54
Page 49
-
Scan #55
Page 50
-
Scan #56
Page 51
-
Scan #57
Page 52
-
Scan #58
Page 53
-
Scan #59
Page 54
-
Scan #60
Page 55
-
Scan #61
Page 56
-
Scan #62
Page 57
-
Scan #63
Page 58
-
Scan #64
Page 59
-
Scan #65
Page 60
-
Scan #66
Page 61
-
Scan #67
Page 62
-
Scan #68
Page 63
-
Scan #69
Page 64
-
Scan #70
Page 65
-
Scan #71
Page 66
-
Scan #72
Page 67
-
Scan #73
Page 68
-
Scan #74
Page 69
-
Scan #75
Page 70
-
Scan #76
Page 71
-
Scan #77
Page 72
-
Scan #78
Page 73
-
Scan #79
Page 74
-
Scan #80
Page 75
-
Scan #81
Page 76
-
Scan #82
Page 77
-
Scan #83
Page 78
-
Scan #84
Page 79
-
Scan #85
Page 80
-
Scan #86
Page 81
-
Scan #87
Page 82
-
Scan #88
Page 83
-
Scan #89
Page 84
-
Scan #90
Page 85
-
Scan #91
Page 86
-
Scan #92
Page 87
-
Scan #93
Page 88
-
Scan #94
Page 89
-
Scan #95
Page 90
-
Scan #96
Page 91
-
Scan #97
Page 92
-
Scan #98
Page 93
-
Scan #99
Page 94
-
Scan #100
Page 95
-
Scan #101
Page 96
-
Scan #102
Page 97
-
Scan #103
Page 98
-
Scan #104
Page 99
-
Scan #105
Page 100
-
Scan #106
Page 101
-
Scan #107
Page 102
-
Scan #108
Page 103
-
Scan #109
Page 104
-
Scan #110
Page 105
-
Scan #111
Page 106
-
Scan #112
Page 107
-
Scan #113
Page 108
-
Scan #114
Page 109
-
Scan #115
Page 110
-
Scan #116
Page 111
-
Scan #117
Page 112
-
Scan #118
Page 113
-
Scan #119
Page 114
-
Scan #120
Page 115
-
Scan #121
Page 116
-
Scan #122
Page 117
-
Scan #123
Page 118
-
Scan #124
Page 119
-
Scan #125
Page 120
-
Scan #126
Page 121
-
Scan #127
Page 122
-
Scan #128
Page 123
-
Scan #129
Page 124
-
Scan #130
Page 125
-
Scan #131
Page 126
-
Scan #132
Page 127
-
Scan #133
Page 128
-
Scan #134
Page 129
-
Scan #135
Page 130
-
Scan #136
Page 131
-
Scan #137
Page 132
-
Scan #138
Page 133
-
Scan #139
Page 134
-
Scan #140
Page 135
-
Scan #141
Page 136
-
Scan #142
Page 137
-
Scan #143
Page 138
-
Scan #144
Page 139
-
Scan #145
Page 140
-
Scan #146
Page 141
-
Scan #147
Page 142
-
Scan #148
Page 143
-
Scan #149
Page 144
-
Scan #150
Page 145
-
Scan #151
Page 146
-
Scan #152
Page 147
-
Scan #153
Page 148
-
Scan #154
Page 149
-
Scan #155
Page 150
-
Scan #156
Page 151
-
Scan #157
Page 152
-
Scan #158
Page 153
-
Scan #159
Page 154
-
Scan #160
Page 155
-
Scan #161
Page 156
-
Scan #162
Page 157
-
Scan #163
Page 158
-
Scan #164
Page 159
-
Scan #165
Page 160
-
Scan #166
Page 161
-
Scan #167
Page 162
-
Scan #168
Page 163
-
Scan #169
Page 164
-
Scan #170
Page 165
-
Scan #171
Page 166
-
Scan #172
Page 167
-
Scan #173
Page 168
-
Scan #174
Page 169
-
Scan #175
Page 170
-
Scan #176
Page 171
-
Scan #177
Page 172
-
Scan #178
Page 173
-
Scan #179
Page 174
-
Scan #180
Page 175
-
Scan #181
Page 176
-
Scan #182
Page 177
-
Scan #183
Page 178
-
Scan #184
Page 179
-
Scan #185
Page 180
-
Scan #186
Page 181
-
Scan #187
Page 182
-
Scan #188
Page 183
-
Scan #189
Page 184
-
Scan #190
Page 185
-
Scan #191
Page 186
-
Scan #192
Page 187
-
Scan #193
Page 188
-
Scan #194
Page 189
-
Scan #195
Page 190
-
Scan #196
Page 191 - Comprehensive Index
-
Scan #197
Page 192 - Comprehensive Index
-
Scan #198
Page 193 - Comprehensive Index
-
Scan #199
Page #199
Actions
About this Item
- Title
- The Pell equation, by Edward Everett Whitford.
- Author
- Whitford, Edward Everett, 1865-
- Canvas
- Page 136
- Publication
- New York,: E. E. Whitford,
- 1912.
- Subject terms
- Diophantine analysis
Technical Details
- Link to this Item
-
https://name.umdl.umich.edu/abv2773.0001.001
- Link to this scan
-
https://quod.lib.umich.edu/u/umhistmath/abv2773.0001.001/154
Rights and Permissions
The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].
DPLA Rights Statement: No Copyright - United States
Related Links
IIIF
- Manifest
-
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abv2773.0001.001
Cite this Item
- Full citation
-
"The Pell equation, by Edward Everett Whitford." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abv2773.0001.001. University of Michigan Library Digital Collections. Accessed June 5, 2025.