The Pell equation, by Edward Everett Whitford.

THE PELL EQUATION 141 The author compares his method for the study of quadratic forms with that of Gauss and Dirichlet and shows the superiority of his own method, for example in the solution of the equation (a2 - 4)y - 4x2 = 1. E. DE JONQUIERES, "Formules generales donnant des valeurs de D pur lesquelles l'6quation t2 - Du2 = - 1 est resoluble en nombres entiers," Comptes rendus de l'Academie, vol. CXXVI, p. 1837, Paris, 1898. Two of the theorems proved are: the equation is solvable when D is of the form 4n2 + n + 5; when D = a2(n2 + 1) and n is a multiple of a, the equation is impossible. G. WERTHEIM, "Uber die Ausziehung der Quadrat- und Kubikwurzeln bei Heron von Alexandria," Zeitschrift fiir mathematischen und naturwissenschaftlichen Unterricht, vol. XXX, p. 253, Leipzig, 1899. A. PALMSTROM, "Les solutions ordinaires des equations x2 + 1 = 2y2 forment elles le systeme complet des solutions?" L'Intermediare des mathematiciens, vol. VI, p. 40, Paris, 1899. Puisse, op cit., vol. V, p. 31, 1898, asks a question implied in the above. See J. A. Serret, "Cours d'algebre superieure," p. 77, 5th ed., Paris, 1885, and P. Bachman, "Die Elemente der Zahlentheorie," p. 182, Paris, 1892. A. PALMSTROM, "Proprietes relatives a l'6quation x2 - Ay2 = 1," L'Intermediare des mathematiciens, vol. VI, p. 210, Paris, 1899. The properties discussed are X2n + Y2n A = (X1 + Y1 IA)2n = (Xn + Yn A)2, X2n = Xn2 + AYn2 = 2Xn2 - 1, and Y2n = 2XYn. G. WERTHEIM, "Pierre Fermats Streit mit John Wallis, ein Beitrag zur Geschichte der Zahlentheorie," Abhand

/ 199
Pages

Actions

file_download Download Options Download this page PDF - Pages 136-155 Image - Page 136 Plain Text - Page 136

About this Item

Title
The Pell equation, by Edward Everett Whitford.
Author
Whitford, Edward Everett, 1865-
Canvas
Page 136
Publication
New York,: E. E. Whitford,
1912.
Subject terms
Diophantine analysis

Technical Details

Link to this Item
https://name.umdl.umich.edu/abv2773.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abv2773.0001.001/146

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abv2773.0001.001

Cite this Item

Full citation
"The Pell equation, by Edward Everett Whitford." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abv2773.0001.001. University of Michigan Library Digital Collections. Accessed June 7, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.