The Pell equation, by Edward Everett Whitford.

138 THE PELL EQUATION The author discusses the law of recurrence which connects the different solutions of the Pell equation. C. ST6RMER, "Om en egenskab ved losningerne af den Pellske ligning x2 - Ay2 = - 1," Nyt Tidsskrift for Mathematik, vol. VII, p. 49, Copenhagen, 1896. The following theorem is found: if x and y are positive roots of the equation x2 - Ay2 = - 1, and a, b, the smallest among these roots, then 1 1 a tan-' - tan-' = 2 tan-' X2 n-1 X2n+l X2n and 1 1 b tan-1 + tan- = 2 tan-1-. X2n-1 X2 nl1 Y2 n C. STORMER, A. PALMSTROM, To solve in integers 1 + x2 = 2y4, L'Intermediare des mathematiciens, vol. III, p. 197, vol. IV, p. 89, Paris, 1896, 1897. Solutions are found by the aid of the Pell equation. A. BELIGNE, H. BROCARD, "Solution of X2 + (X + 1)2 = y4 L'Intermediare des mathematiciens, vol. IV, p. 214, Paris, 1897. R. FRICKE, FELIX KLEIN, "Vorlesungen fiber die Theorie der elliptischen Modulfunctionen," vol. I, p. 253, Leipzig, 1897. M. CURTZE, "Quadrat- und Kubikwurzeln bei den Greichen nach Herons neu aufgefunden MerTpLK&," Zeitschrift fir Mathematik und Physik, Historisch-literarische Abteilung, vol. XLII, p. 113, Leipzig, 1897. M. CURTZE, "Die Quadratwurzelformel des Heron bei Regimontan und damit Zusammenhangendes," Zeitschrift fur Mathematik und Physik, Historisch-literarische Abteilung, vol. XLII, p. 145, Leipzig, 1897.

/ 199
Pages

Actions

file_download Download Options Download this page PDF - Pages 136-155 Image - Page 136 Plain Text - Page 136

About this Item

Title
The Pell equation, by Edward Everett Whitford.
Author
Whitford, Edward Everett, 1865-
Canvas
Page 136
Publication
New York,: E. E. Whitford,
1912.
Subject terms
Diophantine analysis

Technical Details

Link to this Item
https://name.umdl.umich.edu/abv2773.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abv2773.0001.001/143

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abv2773.0001.001

Cite this Item

Full citation
"The Pell equation, by Edward Everett Whitford." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abv2773.0001.001. University of Michigan Library Digital Collections. Accessed June 7, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.