An introduction to the modern theory of equations, by Florian Cajori.

ROOTS OF NUMERICAL EQUATIONS 63 Dividing the left member by 2 and multiplying the roots by 2, we obtain - x2 -2 x - 12 = 0. It is found that + 3 is the only commensurable root of this equation, Hence, + 3 is the only commensurable root of the given equation. Ex. 3. Find all the commensurable roots of x3 + 4X2 + 6x + 3 0. X4 - 3 X3 - 22 x2 - 39 x - 21 = 0. 5 - 10 X4 + 17 x2-x- 7 = 0. x5 - 13x4 + 34 x3 - 26 2 - 18 x + 22 = 0. 6 X3 - 2 x2 + 3 x 4 =0. 4x3 + 20x2 - 23 x + 6 = 0. 56. Horner's Method. This method may be used advantageously for finding not only incommensurable roots, but also commensurable roots when the process of ~ 55 is inconvenient. In the application of Horner's method we must know the first significant figure of the root, to start with. The first digit may be found by the process indicated in ~ 42 or by Sturm's Theorem. Horner's method consists of successive transformations of an equation. Each transformation diminishes the root by a certain amount. If the required root is 2.24004, then the root is diminished successively by 2,.2,.04,.00004. The mode of effecting these transformations, by synthetic division, was explained in ~ 32. The method will be readily understood by the study of the following example: Ex. 1. The equation x3 - x - 9 = 0, I has a root between 2 and 3, for f(2) - 3 and f(3)= + 15. The first figure of the root is therefore 2. Transforming the equation so that the roots of the new equation will be smaller by 2, we obtain 1 +0 -1 -9 2 +2 +4 +6 +2 +3 -3 +2 +8 + 4 +11 +2 - 0(

/ 251
Pages

Actions

file_download Download Options Download this page PDF - Pages 50-69 Image - Page 50 Plain Text - Page 50

About this Item

Title
An introduction to the modern theory of equations, by Florian Cajori.
Author
Cajori, Florian, 1859-1930.
Canvas
Page 50
Publication
New York,: The Macmillan company,
1904.
Subject terms
Equations, Theory of
Group theory.

Technical Details

Link to this Item
https://name.umdl.umich.edu/abv2146.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abv2146.0001.001/74

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abv2146.0001.001

Cite this Item

Full citation
"An introduction to the modern theory of equations, by Florian Cajori." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abv2146.0001.001. University of Michigan Library Digital Collections. Accessed May 26, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.