Lezioni di geometria differenziale.

IL TEOREM\A 11) SCH:UR41 441 Supposti i tre indici i, h, 1 diversi si moltiplichi questa per A., e si sommi da r 1 a r =n, e risultera' a,, - 0. Se qui teniamo fissi h, le e diamo a l tutti i valori da 1 a n, se ne conclude che sara' 2K 2 K altrimenti si annullerebbero tutti i minori della matrice a,,, a,,2 a indi anche il discriminantie a. Dunque: tutte le derivate della curvatura K si annullano e K e' una costante, c. d. d. ~ 438. Le tre curvature priricipali in uno spazio S3 *) iRitornia~mo ora al caso di uno spazio curvo con una forma qualsiasi del ds2, ma supponiamo n 3 per studiare piii da vicino negli spazii S,, a tre dimensioni la distribuzione delle curvature Riemanniane attoino ad un punto, nelle diverse orientazioni. In questo caso la formola Riemanniana (* I risultati che quLi espolianmo pei caso n=3 possono considerarsi come gift implicitamente contenuti nella memoria fondamentale di CRISTOFEFEL (1869), ove ~ riconosciuLta 1'esistenza di. tre imvarianti di/Jerenziali per un dS2 a tre variabill; questi invarianti corrispondono, appuanto alle tre curvature principali. La considerazione dei tre, iassimi (o minimi) della cuarvatura appare, per quLainto sciubra, la prima volta in una memoria di Souvorof: Sur tes caracte'risfiques des stysI~mes de trois dimensions pubblicata in lingua russa (Kasan 1811); unnanalisi di questo lavoro fu pubblica-ta dali' autore nel T. TV del Bulletin des sci'ences mathe'matiques (1873). Successivamnente Scnuiz nel citati lavori (1886) ritorna brevemente sualla legge di variazione delle curvature Riemanniane, nelle diverse orientazioni. 11 nome di earvatuare principali adottato nel testo venne introdotto dal Ricci nella mnemoria: Sui gruppi contiuuti di mnovimeuli Societh dei XL T. XII 1899).

/ 437
Pages

Actions

file_download Download Options Download this page PDF - Pages 14-33 Image - Page 14 Plain Text - Page 14

About this Item

Title
Lezioni di geometria differenziale.
Author
Bianchi, Luigi, 1856-1928.
Canvas
Page 14
Publication
Pisa,: E. Spoerri,
1922-[1924]
Subject terms
Geometry, Differential

Technical Details

Link to this Item
https://name.umdl.umich.edu/abr1998.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abr1998.0001.001/36

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abr1998.0001.001

Cite this Item

Full citation
"Lezioni di geometria differenziale." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abr1998.0001.001. University of Michigan Library Digital Collections. Accessed June 7, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.