The twenty-seven lines upon the cubic surface ... by Archibald Henderson.
Annotations Tools
THE TRIHEDRAL PAIR CONFIGURATION 29 That there are forty-five of each of these types follows from the fact that, if we keep 12 fixed, for example, then there are three ways in which the c-triangles may be written: ( 35 ( f 36 ( 34 46, 45, 56 34.56.12 35.46.12 36.45.12 Hence there are fifteen such sets. All examples of this type may be represented in the abbreviated notation ( i J l } ji' j' i'j' ij, k, 1, 2,...6 (i j k1), [ ij' i'j li the affixes denoting that a different choice of numerals must be made for the letters in the second line to those in the first line. Finally, there is a type: (14. 25. 36) (35. 16. 24) (26. 34. 15) + (14. 35. 26) (25. 16.34) (36. 24.15). The faces of this pair cut the surface in the nine lines ca1, ci5, c16, c24, C25, C26, C34, C35, C36. These nine lines may be arranged in the following form: C14 C15 16 ) C24 C25 C26 L C34 C35 C36 j Obviously such a form arises from the two forms: 1 1 1 r 4 5 6 2 2 2, 4 5 6 3 3 3 4 5 6 Hence the number of such forms is I (6C3)= 10. All examples of this type may be represented in the abbreviated notation j ik il ] i'j i'k i'l,j, k, 1= 1, 2,...6 (i jokl1), ' i"j k il J the affixes denoting that a different choice of numerals must be made for the letters for each line. Hence we have enumerated all the different types, the total number of trihedral pairs being 120 = 20 + 90 + 10. Below are listed the 120 trihedral pairs, according to the rules just enumerated.
-
Scan #1
Page #1
-
Scan #2
Page #2 - Title Page
-
Scan #3
Page #3
-
Scan #4
Page #4
-
Scan #5
Page #5
-
Scan #6
Page #6
-
Scan #7
Page #7
-
Scan #8
Page #8 - Table of Contents
-
Scan #9
Page #9
-
Scan #10
Page 1
-
Scan #11
Page 2
-
Scan #12
Page 3
-
Scan #13
Page 4
-
Scan #14
Page 5
-
Scan #15
Page 6
-
Scan #16
Page 7
-
Scan #17
Page 8
-
Scan #18
Page 9
-
Scan #19
Page 10
-
Scan #20
Page 11
-
Scan #21
Page 12
-
Scan #22
Page 13
-
Scan #23
Page 14
-
Scan #24
Page 15
-
Scan #25
Page 16
-
Scan #26
Page 17
-
Scan #27
Page 18
-
Scan #28
Page 19
-
Scan #29
Page 20
-
Scan #30
Page 21
-
Scan #31
Page 22
-
Scan #32
Page 23
-
Scan #33
Page 24
-
Scan #34
Page #34
-
Scan #35
Page #35
-
Scan #36
Page 25
-
Scan #37
Page 26
-
Scan #38
Page 27
-
Scan #39
Page 28
-
Scan #40
Page 29
-
Scan #41
Page 30
-
Scan #42
Page 31
-
Scan #43
Page 32
-
Scan #44
Page 33
-
Scan #45
Page 34
-
Scan #46
Page 35
-
Scan #47
Page 36
-
Scan #48
Page 37
-
Scan #49
Page 38
-
Scan #50
Page 39
-
Scan #51
Page 40
-
Scan #52
Page 41
-
Scan #53
Page 42
-
Scan #54
Page 43
-
Scan #55
Page 44
-
Scan #56
Page 45
-
Scan #57
Page 46
-
Scan #58
Page 47
-
Scan #59
Page 48
-
Scan #60
Page 49
-
Scan #61
Page 50
-
Scan #62
Page 51
-
Scan #63
Page 52
-
Scan #64
Page 53
-
Scan #65
Page 54
-
Scan #66
Page 55
-
Scan #67
Page 56
-
Scan #68
Page 57
-
Scan #69
Page 58
-
Scan #70
Page 59
-
Scan #71
Page 60
-
Scan #72
Page 61
-
Scan #73
Page 62
-
Scan #74
Page 63
-
Scan #75
Page 64
-
Scan #76
Page 65
-
Scan #77
Page 66
-
Scan #78
Page 67
-
Scan #79
Page 68
-
Scan #80
Page 69
-
Scan #81
Page 70
-
Scan #82
Page 71
-
Scan #83
Page 72
-
Scan #84
Page 73
-
Scan #85
Page 74
-
Scan #86
Page 75
-
Scan #87
Page 76
-
Scan #88
Page 77
-
Scan #89
Page 78
-
Scan #90
Page 79
-
Scan #91
Page 80
-
Scan #92
Page 81
-
Scan #93
Page 82
-
Scan #94
Page 83
-
Scan #95
Page 84
-
Scan #96
Page 85
-
Scan #97
Page 86
-
Scan #98
Page 87
-
Scan #99
Page 88
-
Scan #100
Page 89
-
Scan #101
Page 90
-
Scan #102
Page 91
-
Scan #103
Page 92
-
Scan #104
Page 93
-
Scan #105
Page 94
-
Scan #106
Page 95
-
Scan #107
Page 96
-
Scan #108
Page 97
-
Scan #109
Page 98
-
Scan #110
Page 99
-
Scan #111
Page 100
-
Scan #112
Page #112
-
Scan #113
Page #113
-
Scan #114
Page #114
-
Scan #115
Page #115
-
Scan #116
Page #116
-
Scan #117
Page #117
-
Scan #118
Page #118
-
Scan #119
Page #119
-
Scan #120
Page #120
-
Scan #121
Page #121
-
Scan #122
Page #122
-
Scan #123
Page #123
-
Scan #124
Page #124
-
Scan #125
Page #125
-
Scan #126
Page #126
-
Scan #127
Page #127
-
Scan #128
Page #128
-
Scan #129
Page #129
-
Scan #130
Page #130
-
Scan #131
Page #131
-
Scan #132
Page #132
-
Scan #133
Page #133
-
Scan #134
Page #134
-
Scan #135
Page #135
Actions
About this Item
- Title
- The twenty-seven lines upon the cubic surface ... by Archibald Henderson.
- Author
- Henderson, Archibald, 1877-1963.
- Canvas
- Page 12
- Publication
- Chicago,
- 1915.
- Subject terms
- Surfaces, Cubic
Technical Details
- Link to this Item
-
https://name.umdl.umich.edu/abr1416.0001.001
- Link to this scan
-
https://quod.lib.umich.edu/u/umhistmath/abr1416.0001.001/40
Rights and Permissions
The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].
DPLA Rights Statement: No Copyright - United States
Related Links
IIIF
- Manifest
-
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abr1416.0001.001
Cite this Item
- Full citation
-
"The twenty-seven lines upon the cubic surface ... by Archibald Henderson." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abr1416.0001.001. University of Michigan Library Digital Collections. Accessed June 24, 2025.