Spezielle algebraische und transscendente ebene kurven. Theorie und Geschichte. Autorisierte, nach dem italienischen Manuskript bearbeitete deutsche Ausgabe, von Fritz Schütte. Mit 174 Figuren auf 17 lithographierten Tafeln.

230 IV. Abschnitt: Spez. algebraische Kurven v. höherer als der 4. Ordn. setzt man in diese den aus (9) sich ergebenden Wert v - ein so ergiebt sich u b-x +V 4-x 2 und ähnlich v -- y - 2- | b X2/. Setzt man diese Werte in (10) ein, nachdem man daselbst h= 0 gemacht, so findet man nach einigen Reduktionen 3 3 3 ax + /+ 2 4...... (12) als Gleichung der allgemeinen Astroide. Wollen wir die beiden Fälle unterscheiden, dafs die gegebene Kurve r eine Ellipse oder Hyperbel sei, so kann man (12) folgendermafsen schreiben 2 2 (a) + (...*.... (i2+) Die so dargestellten Kurven wurden von La Gournerie, da sie reziprok zu den harmonischen Trinodalen (Nr. 97) sind, trilaterales harmoniques genannt'). Nehmen wir nun die Axen zu einander rechtwinklig, so findet sich obige Gleichung bei der Theorie der Kegelschnitte; betrachten wir nämlich die Ellipse ()+ (y)2 = so zeigt man leicht, dafs, wenn man der Kürze wegen m2-n2 2 -n2 in v setzt, dann die Gleichung 2 2 (X + er - die Evolute derselben darstellt; nehmen wir also in (12) das +Zeichen, so ist die entsprechende Kurve die Evolute derjenigen Ellipse, deren Halbaxen bezw. 2ab2, 2a2 b~ sind. Ähnliches ergiebt sich, wenn a2- b2; a2- b2 man in (12) das -Zeichen nimmt. Von dem besagten Gesichtspunkte aus betrachtet finden sich die allgemeinen Astroiden in Abhandlungen über die Normalen der Kegelschnitte2); diese Betrachtungsweise er1) Recherches sur les surfaces reglees tetraedrales symetriquzes (Paris 1867) S. 116. 2) G. Bauer, Über Systeme von Curven sechster Ordnung, auf welche das Normalproblem bei Curven zweiter Ordnung fuihrt (Ber. der Akad. d. Wissensch. zu München, 1878). S. Roberts, On the sextic curves represented by 2 2 2 (Quar. Journ. XV, 1879). (Quart. Journ. XV, 1879).

/ 803
Pages

Actions

file_download Download Options Download this page PDF - Pages 216-235 Image - Page 216 Plain Text - Page 216

About this Item

Title
Spezielle algebraische und transscendente ebene kurven. Theorie und Geschichte. Autorisierte, nach dem italienischen Manuskript bearbeitete deutsche Ausgabe, von Fritz Schütte. Mit 174 Figuren auf 17 lithographierten Tafeln.
Author
Loria, Gino.
Canvas
Page 216
Publication
Leipzig,: B. G. Teubner,
1902.
Subject terms
Curves, Plane.
Curves, Transcendental.

Technical Details

Link to this Item
https://name.umdl.umich.edu/abr0252.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abr0252.0001.001/255

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abr0252.0001.001

Cite this Item

Full citation
"Spezielle algebraische und transscendente ebene kurven. Theorie und Geschichte. Autorisierte, nach dem italienischen Manuskript bearbeitete deutsche Ausgabe, von Fritz Schütte. Mit 174 Figuren auf 17 lithographierten Tafeln." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abr0252.0001.001. University of Michigan Library Digital Collections. Accessed June 23, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.