Teoria analitica delle forme geometriche fondamentali. Lezioni date nella Regia università di Torino...

— 88 - Essa dipende da due parametri: uno e p, e l'altro e a o ( (essendo a -+ P w c). Per ridurre l'equazione generale ax + by -+ c 0 a forma normale, si osservi che, dovendo questa equazione e la [1] rappresentare una stessa retta, i loro coefficienti saranno proporzionali, ossia sara cosa cos -p a b c e queste due equazioni, con la a - + wu, serviranno a determinare le tre incognite p a 3. Dalle dette due equazioni ricaviamo Ca b cosa - - -p, cos] - - p; c c e sostituendo nella a +- P w, o meglio nella cos2a - cos2 --- 2cosa cos cosw - sen2w, troviamo (al + b2 -2abcosw) p -- c^senaw, onde csenw [21 P [2]L pJ ~ bI -+2ab cosw dove -- il segno di c, poiche p e senw sono positivi. Avuto p, risulta a senw b senw [3] cosa = -, _ cosB -_ -. |/a - +b2 — 2ab cosw ' /a, + +S - 2abcosw Le formole [2] e [3] risolvono la questione. Sostituendo nella [1], possiamo dire piu concisamente: che il primo membro (Iell'equazione di una retta ax + by + c = 0 sotto forma norrnale e (ax + by + c)senw [4] f +/a2 + ba - 2ab cosw Per assi ortogonali le formole si semplificano, e si ha c a b P,= + -., cos+ + w -, cos- = sena= — _ * ~ +&2 =F + -' 2 ^V^+

/ 211
Pages

Actions

file_download Download Options Download this page PDF - Pages 74-93 Image - Page 74 Plain Text - Page 74

About this Item

Title
Teoria analitica delle forme geometriche fondamentali. Lezioni date nella Regia università di Torino...
Author
Ovidio, Enrico d', 1843-
Canvas
Page 74
Publication
Torino,: E. Loescher [etc., etc.]
1885.
Subject terms
Geometry, Analytic

Technical Details

Link to this Item
https://name.umdl.umich.edu/abr0038.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abr0038.0001.001/95

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abr0038.0001.001

Cite this Item

Full citation
"Teoria analitica delle forme geometriche fondamentali. Lezioni date nella Regia università di Torino..." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abr0038.0001.001. University of Michigan Library Digital Collections. Accessed May 18, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.