Teoria analitica delle forme geometriche fondamentali. Lezioni date nella Regia università di Torino...

- 119 -Es. 4. Posto inoltre y + ya + ap = 2o, si ha sensaT == 4senG sen(o -- y) sen( - yoa) sen(o - ap). senlabc sen"2ay Es. 5. senate = --,e sena-besenbesenca senab e senSy senya sena' senabc senbe senca senab senuy seny senay sena ' Es. 7. Trovare pel triedro e pel triangolo sferico gli analoghi dei teoremi di Ceva e di Menelao relativi al triangolo rettilineo.

/ 211
Pages

Actions

file_download Download Options Download this page PDF - Pages 114-133 Image - Page 114 Plain Text - Page 114

About this Item

Title
Teoria analitica delle forme geometriche fondamentali. Lezioni date nella Regia università di Torino...
Author
Ovidio, Enrico d', 1843-
Canvas
Page 114
Publication
Torino,: E. Loescher [etc., etc.]
1885.
Subject terms
Geometry, Analytic

Technical Details

Link to this Item
https://name.umdl.umich.edu/abr0038.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abr0038.0001.001/126

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abr0038.0001.001

Cite this Item

Full citation
"Teoria analitica delle forme geometriche fondamentali. Lezioni date nella Regia università di Torino..." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abr0038.0001.001. University of Michigan Library Digital Collections. Accessed May 18, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.