Théorie et applications des équipollences, par C. A. Laisant.

APPLICATIONS A LA THPORIE DES COURBES. 229 On a (DM -= t^t O2tI = (I it)St, W3 = ( i -- t) St, (4 Al = - (3 + it) St. La relation (3) se reduit a 3q - t -+- (3qt + ) i = rt, ce qui donne q =-, - __o q 3-t' i *=-I — t L'equipollence (4) donne alors -3-it- (5 t2 -4- -~3p ( it) st, et, en annulant le coefficient de i, 4 3 ~- 3p =o, 3t2 (6) 3p2 = 3 T- Cette valeur etant essentiellement positive, la developpante de cercle a une courbure elliptique en chacun de ses points. Les relations (i) et (2) serviront a determiner les deux diametres conjugues MV, MO de l'ellipse osculatrice. La spirale logarithmique (168) ayant pour equipollence MI = eai ~t la relation (3) donne (a ci- i)2-i- 3 q (a -- i) = r; d'o-i 2a q r =-(aa -- I). La relation (4) se reduit alors a (ai)3 3 — a2_ 4 3p2) (a i) s

/ 331
Pages

Actions

file_download Download Options Download this page PDF - Pages 218-237 Image - Page 218 Plain Text - Page 218

About this Item

Title
Théorie et applications des équipollences, par C. A. Laisant.
Author
Laisant, C.-A. (Charles-Ange), 1841-1920.
Canvas
Page 218
Publication
Paris,: Gauthier-Villars,
1887.
Subject terms
Coordinates

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn7895.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn7895.0001.001/252

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn7895.0001.001

Cite this Item

Full citation
"Théorie et applications des équipollences, par C. A. Laisant." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn7895.0001.001. University of Michigan Library Digital Collections. Accessed June 22, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.