A treatise on spherical trigonometry, and its application to geodesy and astronomy, with numerous examples. By John Casey.

Formulae Relative to E. 91 10. The cosines of the arcs joining the middle points of the sides of a spherical triangle are proportional to the cosines of half the sides. 11. Solve a spherical triangle, being given a, b ~ e, and E. 12. If s denote the semiperimeter of a spherical triangle, A, a,, A, A its area, and the areas of its colunar triangles; prove that tan2 - = tan a A. cot A. cot b A. cot - ac. (383) 13. Prove sin E = cot R tan a tan b tan 2 c. (384) 14.,, sin s = sin a cos B cos C sin A. (385) 15. If (a + b + c) = 7r, prove cos A + cos B + cos C 1, cos A. (385) B C 16. In the same case, prove that cos A = tan - tan -. (386) 2 2 sin21A + sin2 B +- sin2 C!- 1 17. Prove coss=.+ (387) 2sin A sin i B sin ( C 8., sin sinEcos(A-E) cos o(B-E)cos2C-/) (388) 2 4 sin ~A sin B sin ~ C b c 19. If E = r, prove that cosA = - cot - cot -. (389) = 2z%' 2 o2 cos2B+ cos21 C - cos2. 20. Prove cos (s - a) = 2 cos 2-c 2 (390) 2 sin A cos B cos ( C 21. If I be incentre of a spherical triangle, prove that A B C Cos2 - os2 - - cos2 - 2 2 2 cos BIC = B C. (NEUBEaG.) (391) 1B C 2 cos - cos - 2 2 22. If Ia, Ib, Ic be the incentres of the triangles colunar to ABC, prove that A4 B C cos2- - sin2 -sin2 cos BIaC = - - (Ibid.) (392) 2 sin - sin - 2 2 23. The angle BI,, C corresponds in the supplemental triangle to the are joining the middle points of two sides. (Ibid.) 24. If Ia be the incentre of the colunar triangle A'BC, from Ia let fall perpendiculars IaD, IE, IF on the sides BC, CA, AB, respectively; then the angle BIa C = ~ FIE = FIaA. The triangle FIaA gives cos FI A = cos AF. sin FAIa = cos s. sin. A. Hence cosBI C = co s. sin ~ A.

/ 199
Pages

Actions

file_download Download Options Download this page PDF - Pages 82-101 Image - Page 82 Plain Text - Page 82

About this Item

Title
A treatise on spherical trigonometry, and its application to geodesy and astronomy, with numerous examples. By John Casey.
Author
Casey, John, 1820-1891.
Canvas
Page 82
Publication
Dublin,: Hodges, Figgis, & co.; [etc., etc.]
1889.
Subject terms
Spherical trigonometry.

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn7420.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn7420.0001.001/110

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn7420.0001.001

Cite this Item

Full citation
"A treatise on spherical trigonometry, and its application to geodesy and astronomy, with numerous examples. By John Casey." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn7420.0001.001. University of Michigan Library Digital Collections. Accessed May 15, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.