Memoirs presented to the Cambridge philosophical society on the occasion of the jubilee of Sir George Gabriel Stokes, bart., Hon. LL. D., Hon. SC. D., Lucasian professor.

228 M. H. POINCARÉ, SUR LES GROUPES CONTINUS. Je dirai pour abréger une somme régulière pour désigner une somme de produits trinômes qui est un polynôme régulier. Soit alors S = Sp- Tp + Sp_ - Tp +.. une somme de produits trinômes; les deux premiers termes Sp - Tp représentent la somme des produits trinômes du degré le plus élevé, c'est ce que j'appellerai la tête de la somme S. J'ai distingué plus haut dans un produit trinôme trois parties que j'ai appelées le monôme positif, le monôme négatif et le produit complémentaire. Je dirai qu'une somme de produits trinômes forme une chaîne si le monôme négatif de chaque produit est égal et de signe contraire au monôme positif du produit suivant. Le monôme positif du premier produit et le monôme négatif du dernier seront alors les monômes extrêmes de la chaîne. Il résulte de cette définition que tous les monômes positifs d'une même chaîne ne diffèrent que par l'ordre de leurs facteurs. Une chaîne sera fermée si les deux monomes extrêmes sont égaux et de signe contraire. Si Sp- Tp est une chaîne fermée de produits trinômes (Sp représentant la some des produits binômes et -Tp celle des produits complémentaires), il est clair que Sp est identiquement nul puisque les monômes positifs et négatifs se détruisent deux à deux. Nous avons vu que si S est une somme régulière, Sp est identiquement nul, d'où il résulte que la tête d'une somme régulière S se compose toujours d'une ou plusieurs chaînes fermées. Si deux chaînes ont mêmes monômes extrêmes, leur différence est une chaîne fermée. Nous nous servirons de cette remarque pour montrer qu'une chaîne fermée peut toujours de plusieurs manières se décomposer en deux ou plusieurs chaînes fermées. Une chaîne fermée quelconque peut de plusieurs manières être regardée comme la différence de deux chaînes C et C' ayant mêmes monômes extrêmes; soit alors C" une troisième chaîne ayant mêmes monômes extrêmes. La chaîne fermée C-C' se trouve ainsi décomposée en deux autres chaînes fermées - C" et C" - C'. Il s'agit de montrer que toute sonmme régulière est identiquement nulle et en effet quand cela aura été démontré, il sera évident qu'un polynôme régulier dont tous les coefficients ne seront pas nuls ne pourra être équivalente à zéro, puisque tout polynôme régulier équivalent à zéro est par définition une somme régulière. Supposons que le théorème ait été établi pour les sommes de degré 1, 2,..., p- 1; je me propose de l'étendre aux sommes de degré p. Je remarque d'abord que si une somme régulière de degré p est identiquement nulle, il en sera de même de toutes les sommes régulières de degré p qui ont même tête. La différence de ces deux sommes serait en effet une somme régulière de degré p- 1 qui serait identiquement nulle d'après notre hypothèse.

/ 521
Pages

Actions

file_download Download Options Download this page PDF - Pages 226-245 Image - Page 226 Plain Text - Page 226

About this Item

Title
Memoirs presented to the Cambridge philosophical society on the occasion of the jubilee of Sir George Gabriel Stokes, bart., Hon. LL. D., Hon. SC. D., Lucasian professor.
Author
Cambridge Philosophical Society.
Canvas
Page 226
Publication
Cambridge,: The University press,
1900.
Subject terms
Physics.
Mathematics.
Stokes, George Gabriel, -- Sir, -- 1819-1903.

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn6101.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn6101.0001.001/263

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn6101.0001.001

Cite this Item

Full citation
"Memoirs presented to the Cambridge philosophical society on the occasion of the jubilee of Sir George Gabriel Stokes, bart., Hon. LL. D., Hon. SC. D., Lucasian professor." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn6101.0001.001. University of Michigan Library Digital Collections. Accessed May 24, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.