Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.

91 TJV^<-~ vrtCCd@ eLirt dLt, rl Cj'.rec c S Lct xr 9 iuL <d [uQ u^^en Peo e~c dea (?LcC.L /14 d T c9Col ta-t:LO. (X) ~u,(YZ),( T) dcrp,.z 1t let -r<,C led fLc Je dtut s'ce- f enere,c)C ee 14 6 ) (\t ()XZ),(XT);(YZ)...T (eY 7i)nezoni c/ t aZ let,e mc axieA A A-, f)B t C, I)D on- ale avce_- dea"d {trep 6tecruame joJe at RinJope rL mclJ ABC D \ \ AS ~, AC, AD, BC.. i.. 'L.~cyeenfJc~ccor Le Sjnat LCd ^ievICe - C e- n oIehC oc { v<? oe. A, f.BA, V oeFC, vo j ' Dre (elg nlerC'ecre g t ccairt emet ie Iturtr drt bifzteAroeo c h a.Pier, - - a.e Je Zo tze[J e jleX-a, ii zznrz i4 it' lcd axej a d fsj dcL ctt- refe,c. ac- re/^rc/tce- 7,- avo7Lt1:ient b ae JOrmmetr co-c-Jponen *. Lto.wL Vo\. A edei-rqne leoi L oLwrmnz cltI ut'vce"ilre- cozd2n"z-itZ lc —e Lorntfiu&i5ealeh, L rn.zet- E[ rL^eo, JapcL d LLd JmtCa A, aIL. led axem je Ie BCA.CDA, B-DA; -c - -- ~pT, r s, orztl let oalca zbi a olne - e oce i l oC T~ O eifaf (A), (Sb, C )} ()) It', z e t rletcaef^ d. 'ef'e re; -, / ^ p ^ol ztni-e JtL- bl'ectre — d1et ^ renc.~ || ze X Ioor iYnneet X,y, 7,s t ona /a — relaltionz i n, j/ >7- z -ezc 3) de XY,, T /e^nt-celfe (eaLo ondeVaY VOL'. z_ tzc izdenrztfl CL, Y,Z; /=-ttmirz,,, z_ L f e' -oru ae-,dre'a -, orL. zcC.Caj ZL,, iL ~M,irtt%:': A Co L g c p+ C Ccy + D c>S =, IA oc,+ +; B co t,+c <y,~, o 8C=s1-o ^( s ) A coL. +,..~+ C +tD Cos2=<? Ap + B+ Cr + DS = 3 K c;e^jTo^/^ /e-j k-etj pJL-rnmzeceC Le ejuoeJIZI (S) Jp'L 'rcporfc a.,,C, D/; no/?z heoi-zvoni CAb C _ C D 1 iC. p C 3 Y c S o- t C C c> a i G ct |,;v) | C ) S | | I Cc Y1 C S|| C. o, 'c C.| -. Cao < COIL x C z |C7, d 'apl'eC^. de/?nZLothL kJ a<Xed (X), (Y), (Z), ( Tr)! fl45] (23 / r1 te-: GP XY= coo CO4J p + C4- +, CGM P1,- Co c-o C, 2 1 0L rC X & I Co 3 t C, 1. 1 oi 2 y! <c Xz- cG^ < y+- Co,~ o0. y~.+ coo o% c^ y cj J - X-T = Ce. Ce? S + c<. co ~o f, + tc <2 c=? I t1! T)Cm I / A c. o- = C c, t? C,. y + c~ g, C) y. + cd, fs? c,, y,, l C^ T — Co # cV S t CI. a) C C- ^ Q S I \ CL zT-= c? y ce S e Co y, c.- S, + t o GeA c S2 * |/ I- C?' 1P Cec y CG S 1' c, z,, YT I~ I j Ce, C" cmS C l-c, Z c XT.. V '. A); TY" y ^ TZ t *2C ZT 61 ve~ / oC t c y I $i1 | 1 c Zo T |= (] i P B) i ~ ~?~'~h~~~~~~ — | s Cov T |-|. ( '-; Ic | o I CIL c Ce 5 C5? y c NXY~ Co XT ~ en 'C'o~ YX i Co Z i=iX ). C. <<- 7 p 0 C y'.c c z " C'ZY TY Q.r 0^^ C " c y i < z x. (TZ_

/ 961
Pages

Actions

file_download Download Options Download this page PDF - Pages 74-93 Image - Page 74 Plain Text - Page 74

About this Item

Title
Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.
Author
Painvin, M. (Louis Felix), 1826-1875?
Canvas
Page 74
Publication
Douai,: Imp. A. Robaut,
1869-71.
Subject terms
Geometry, Analytic -- Solid

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn6069.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn6069.0001.001/98

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn6069.0001.001

Cite this Item

Full citation
"Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn6069.0001.001. University of Michigan Library Digital Collections. Accessed May 3, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.