Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.

8; i*e cZ ponl aitxjir-ce 3 BCDJ), CADABABCB; lc' cvonc rt e uilid 1cittled_, coo-Oorzn.ee Se noa^ deainedort. par X,Y,%, JT Oont defintLwt- I- '/Z c: X /A XI _ _. I ^x/ ^ s T= C MM A s 1 T - g - Sew -, r,v p k, ani/- o pa7<ze/7r/J d re^ e eZreC&, cc-L-aii^ j'unaif^ tl JI/1C4iC C-.L 2At coiuvrn-rtZes et'LqiczsiCe X,Y,Z, T in- ' PIoLr LL difo&enf V~c'.ueii /c eA Z oon A B C D (1) -- — Y + -- +-T= 3 t H V e oz.L E t:PdctEe.. 4-fo4lm7C dILZ- teA/aeAzre /e 'refewrC., et A, C eP, C, D, zeee: %le- z - re-PecTe Cie_ / (/0c> arcZe a cele uecIioIL- en rcrnazidzr u laz Ize- bu4 iteItce A BCD et i Zt Jorr me dea qIza uei Ictaee,-ciaLa,tieLl JOiriZ1ZZ e. czjol nz le p Aoint M az2r *jornzmeb A,, B,,). c-^ OJ jlziortid Jtz.- Le ' tinev de.J cood'cJorrLeuC A tf /- coiwnenz&wn ljzarz/l~''a- Cotonrr-, LfcL pooizc_ Otl ner&tive luut;c — Mf C cs poL n t ~^r1P, pO'C c ctppo'Ct a- l ccc co -<i o 'p _n~axn.~ d,,lt.r. me. co~i~,1, 1 omrt o-prrom e. ott. uLtn- cb; ^,JT-drd~..'ir cacmple, ji. ie point 11-e41, paxc 'apporbi a, / 3 BCl)2 r z memre cole t jcr rlnrnuzL A,.cIo'clonnee- X Jera poidc1 lce JCeia iilattt&, i /w poirb M eif-A.joTib te pa cdd- fairetde. /a ziLzBCD 13C) -u. C> ~ corjztd al wce rt conce7 rdLw 'paac L c/Ljcu- dz jiorzu Lz ice/ato aL^-afpolt menrlC (a). C9nd e etnco'~ cond-ui/l W pa:c laJ- da J iZOL. 'eo 'Lm 4 tUzvLr.eQ,( / -,-l-X, t-mt X. m, Y + m. Y2 f nz Y ur -— / ---,z-.:,......... ';/dPoJ 21li c jode i ~+ In T ~ ITL. f 4rrL ~ ~ofrii" dzon TrtI le codorLneet \ XYZ T) d: point M dzzJjari ae JemEtni- M, I. 'c1.? Ya~'lJcO l — L; Ce J jotk Ile.-CiI,I-Y,, Z-, T,, Y, Z, T j o cr e- - Xl r, Z1 -r, eL X, Vet, Z T2 Jone L cJL oorn ie ec e poib e I r-rzaird~enzvc - /MJ cor-'crdor7 eu nceCei.L- cL1l' _ G-, ) C7zuia Ci..d — r c lonia.l-iorL.ie. zedlAioL i411 cI/e e*ilZ iezl1uie- ec ec eiZi - 1nrec me/l.a ' Ltn e;Mff, D M, w, 2, Mt/ 1, jon/ L^/J Pernd:zi:2i-e Xl a t, o e J/pozn 1 z L. bM, e i0Z -7lBaCD, on a,A r~ i,:.ou..i- 't-,it/e 4.- -ou il 1/ dY~i e MI _ m- T )-< - 3-It i, n2, - 'oL'- --. -- -..j B

/ 961
Pages

Actions

file_download Download Options Download this page PDF - Pages 74-93 Image - Page 74 Plain Text - Page 74

About this Item

Title
Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.
Author
Painvin, M. (Louis Felix), 1826-1875?
Canvas
Page 74
Publication
Douai,: Imp. A. Robaut,
1869-71.
Subject terms
Geometry, Analytic -- Solid

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn6069.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn6069.0001.001/94

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn6069.0001.001

Cite this Item

Full citation
"Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn6069.0001.001. University of Michigan Library Digital Collections. Accessed May 3, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.