Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.

4-7 7noztUL azl.-IorL A1 a a, A a a, A A a A A a ) 1- b b, = =- B B IC C'cC c C6 c c11 C c c, C C, c C C, c n donnarmzt X, A6 1 ' l arl e K, le val (4/), 'l eflut-i (3) et tUlze-zderiil/./ LecL pJe, 7i eil- ailoz 'tH//le- 7z le- &l tru (I) AM +vl, I,-=o, pac upa'c-lad' ol A;. et Gli/ pat c 7a7laai oi/k (S) j rio' / (Sp, cwcp, Iz entit/i (3). Idcz)to "on' IlLtrn iJ) pezt enrco'e -J eczre_ ~. 'TT + m, t - Kt = o; O'C, JoZIi ceeiw /neI on,. toif A_ ' lyp a le. point- (m= o, rrL,=o, t =<o), cd.. pale /e&point rle eenconlice 1e z drLi ~ aclec- lpyiTa ik u a'e i. CG1n daenzonJr4a^ dte..nemel /u le pl (II) f m- = o va^iie parL 'i/ Jco (g) ete4i-pazallplea/ dt1U dacoi/ (AC). 83. <t0il doeel C aaulor xo X, = o, Z=o, T=-o, deji,Lt Z'I facco d te- tx^o ['- eXc L c<ttlCo L L x11np -p Lx uzcaco rt tc- pet lu to 0v? WC icu- &-r e 1 mecr o- - Co Ftne^ AX + BY+C. +DT=o. toent Zej eztuaitton ded /tta/cle.plZauJ /otonfL~f X = ax + al-yt a, Z+ a, Y =,b+ by+ bz +,, Z = C x+ C, y+ cz + c, Tr At xlc,-x cl7+cltL+,Sj Joi, de. p14; / e4 aiTrz I l7.WI-plan/ ad ttlibcvwcIernerk caitZiJ(3) ntf+ m,y + m2z +3-m3 =o. JI i 'ade onirce ue e 'zaiyorfL ^) petit touoL'c6 Je meffreaioJ leJ mex (3 AX+ BY+ CZ +DT'o. SC eL enCi /afo, reampro dan uequtin (3), Y, Y,Z T, pct I eV'c4 VaZezt'cJ (s), L-/-vlenril (4) (Aa+ Bt-Cc +DB)x+(Aa,+ Bb,+Cc,DtBc,)y+c(Aa^,+B+t Cc2 c)z+ tAa3 + Bb+Cc-Dcl) =; iLfatat maleo coarqztel z'fourLi' j dip+ eo-ec+de I ontaned A, B, C, D, mar.el —,. ie Zioi Z lra (l4) crr'e Jerk( le plaw 2)r(. ()&,Gr pOw7c f itLerzLoiarzi& ii -zpeiZe't uet I ofi/ aor a7L Aa Bb+t Cc +id Aa,+ B,+Cct+Dct, Aa-+,bbCc~+DIA Aa +Bb +Cc3 +-D3 m_ nti nUL2 3it. I-L, en deCt7nanft a A ZX t C^s7romtnm7L7eC de ce /apo'dJ: ( AA +- + Cc + -D cLrnr, Aa2+~BM+~Cc2tDU = m A a,+ Bb,+ Cc,+ Dc1=-a, A a3 + Bb3t Cc3+ ct X3 n t3. zc iia/reeizatiaovn () aeiktcnrir t lei Jcappo-rb (A5 ), - ~; iL, edl i errrtl/ I r'ajypor pariBC vaiu b>akiicz ezahiOrLu (L2) oL autLztam / z IjZ-ctpu/7L (2) L-Jot/ cLrawne annorLocee. /dctLJei'ueondhl&orn, paou.cz uelew e aLic c/iy corullnde A,B, C, D, JoitentruWe etl Jelecuninte-, eSjaque le- erltzomzrateur- crmrtuLn-?r a 1 c A a, b, c, d, a, b3 c, d d3 b3 C3 d3

/ 961
Pages

Actions

file_download Download Options Download this page PDF - Pages 34-53 Image - Page 34 Plain Text - Page 34

About this Item

Title
Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.
Author
Painvin, M. (Louis Felix), 1826-1875?
Canvas
Page 34
Publication
Douai,: Imp. A. Robaut,
1869-71.
Subject terms
Geometry, Analytic -- Solid

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn6069.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn6069.0001.001/54

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn6069.0001.001

Cite this Item

Full citation
"Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn6069.0001.001. University of Michigan Library Digital Collections. Accessed May 3, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.