Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.

J4 eJ~ decx,/2ir1n vmp ~arl//,ed, /vearJ hcaceJ, jiur dfutx p/alsw qque/cdiLytJ,.o<nt _i A id e'rwurezent1.C-9 L d AireJ sc dcu lixpJian0 M N zVtjctle-.pli Jc -xy Jarz/ ic'Jpecuerrtam n -At + CZ + D=o, AIX+C+ C1 Do; a.-ec:-y. ca) adea 4x dteite d~loc' elrd epauaeI& pcL ziib AfJ eiaele 61lfbzpldtne.ij Ivl w-L leif J y_,onr fepcc~tvmzrrd 1-v,+ Czt +D, B1y 1 C)1ze3)1=o, *VeC y=a; B C B, C Ci-3one poaqte- devcl pifano riaenL ctx@E~feo it ct t oz'i-t 'lnAe- ru + C1+3Dyo, B1 z,y-C,-aD, aec o. ceyzzaforbd^ A a 7anfl e v calctle. pa4calwPa i at^er'scco rn We-c ezc-,?laza, n'eL r,-(I) e_(2) et c 7 ap trea-0tiL Ce6S zt l'ei crAot& Iv aiZ! //O/7ze4 t/ tI ri. p(c A pXAn ft A -x+ Bf) ft + C, )u x(' D f ACD,) t AcA=o im. r i e x eu- an toie inntt J'aectcrcTi- pwrXeleU, r ngct-, e ti uie u, -ar cetll e&Goccfcon, doll pourvat1c. ef amene a coi;zc Zve /e. n d /L 1 =o, c.d en peZppeer A + A Al t- +X3B, o CF A COj A 1B C A, B. C1 0.A = it eqzatzroc1 L /l/raqe,c 7tueto-paanL dz ac Iil c'dectoLe) dexp/anz ud4ariZ — (2) e6 (2) eit, aUVai'c crnzdL_ /e1 eqt9dLortz, horrov er,.:. (4) (At+ XA,): + +QB+ X1,) y+ (C+ X C, ) t,(I D.Xh.) [=o. (O jr si d[ettoc/an do/aw r donneS JoZt~?a'cW[//eL$, /zzz. /idejcctioret' e/ idi / n/tui.'L; /vaxz'Ak, iuw law.,?a~on,/1,, ce//ej In/cw4i ccLrTu aDoi,poattc We dzonc, a ierz eJ - z pvec4 iJ/t/ onte o f oUdL.aozt/peez /lc'c A+ A, o, B-+X B o, CXC D+ oL ( A) _ = _ C_ A, ~, C TD,,,d/4. (cjvi~dtA + uAm —o, BL.B paoete, C4-f-fo, +. ~OTT-, olf il eCualt4'0,,Ln d 'Ila- plarn d-07MC-' ~d ~'of~ /I~ ~~on cc, -tDt (o) -— =A^ —By-C-4 —. i ^ titin, 7efale Adj plan paccallce aIL -piarL ) cil' ) =(2) X-MA+x-+,C+Do. /~zw/ibwrjjertera1e le p/aal 't [aara aa_? () coa.:':'.. A7 ccan!l ad 'ircaixc. d eCet, a/; ' coe/.cten f eI l/, drt.e6 ettiLciont- (1)d ct (), jortrtu tf'i e-rnenf p?? opo! r 7l ^t; on -do.. O emoe, I'e/tu4n 2), rendIe homcrne-, peutf J'ec'7re (3) X M tt =; l /a d'oz/e, WcTomi/1cc da/ plarn (1) / (:3), /pare/ pcn t /., cda.el a t./tnfl. dac.L i.-.n /;. C l /La;i o tio tLn, pcn- pi ctf t c u/. e-/ at in tclL a- C le pAxf.?innet.,,1Z Z2 /fa rnfi ^ egt21/t C- {./~ldm L iJI< // a 1^ l 7On 7~C;l

/ 961
Pages

Actions

file_download Download Options Download this page PDF - Pages 34-53 Image - Page 34 Plain Text - Page 34

About this Item

Title
Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin.
Author
Painvin, M. (Louis Felix), 1826-1875?
Canvas
Page 34
Publication
Douai,: Imp. A. Robaut,
1869-71.
Subject terms
Geometry, Analytic -- Solid

Technical Details

Link to this Item
https://name.umdl.umich.edu/abn6069.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/abn6069.0001.001/49

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abn6069.0001.001

Cite this Item

Full citation
"Principes de la géométrie analytique. Géométrie de l'espace, par L. Painvin." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abn6069.0001.001. University of Michigan Library Digital Collections. Accessed May 3, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.